49  Hyperparameter Tuning with spotpython and PyTorch Lightning Using a CondNet Model

from spotpython.data.diabetes import Diabetes
from spotpython.hyperdict.light_hyper_dict import LightHyperDict
from spotpython.fun.hyperlight import HyperLight
from spotpython.utils.init import (fun_control_init, surrogate_control_init, design_control_init)
from spotpython.utils.eda import print_exp_table
from spotpython.spot import Spot
from spotpython.utils.file import get_experiment_filename
from math import inf
from spotpython.hyperparameters.values import set_hyperparameter

PREFIX="CondNet_01"

data_set = Diabetes()
input_dim = 10
output_dim = 1
cond_dim = 2

fun_control = fun_control_init(
    PREFIX=PREFIX,
    fun_evals=inf,
    max_time=1,
    data_set = data_set,
    core_model_name="light.regression.NNCondNetRegressor",
    hyperdict=LightHyperDict,
    _L_in=input_dim - cond_dim,
    _L_out=1,
    _L_cond=cond_dim,)

fun = HyperLight().fun


set_hyperparameter(fun_control, "optimizer", [ "Adadelta", "Adam", "Adamax"])
set_hyperparameter(fun_control, "l1", [3,4])
set_hyperparameter(fun_control, "epochs", [3,7])
set_hyperparameter(fun_control, "batch_size", [4,5])
set_hyperparameter(fun_control, "dropout_prob", [0.0, 0.025])
set_hyperparameter(fun_control, "patience", [2,3])
set_hyperparameter(fun_control, "lr_mult", [0.1, 20.0])

design_control = design_control_init(init_size=10)

print_exp_table(fun_control)
module_name: light
submodule_name: regression
model_name: NNCondNetRegressor
| name           | type   | default   |   lower |   upper | transform             |
|----------------|--------|-----------|---------|---------|-----------------------|
| l1             | int    | 3         |     3   |   4     | transform_power_2_int |
| epochs         | int    | 4         |     3   |   7     | transform_power_2_int |
| batch_size     | int    | 4         |     4   |   5     | transform_power_2_int |
| act_fn         | factor | ReLU      |     0   |   5     | None                  |
| optimizer      | factor | SGD       |     0   |   2     | None                  |
| dropout_prob   | float  | 0.01      |     0   |   0.025 | None                  |
| lr_mult        | float  | 1.0       |     0.1 |  20     | None                  |
| patience       | int    | 2         |     2   |   3     | transform_power_2_int |
| batch_norm     | factor | 0         |     0   |   1     | None                  |
| initialization | factor | Default   |     0   |   4     | None                  |
spot_tuner = Spot(fun=fun,fun_control=fun_control, design_control=design_control)
res = spot_tuner.run()
train_model result: {'val_loss': 24159.23828125, 'hp_metric': 24159.23828125}
train_model result: {'val_loss': 23455.20703125, 'hp_metric': 23455.20703125}
train_model result: {'val_loss': 25569.056640625, 'hp_metric': 25569.056640625}
train_model result: {'val_loss': 24069.580078125, 'hp_metric': 24069.580078125}
train_model result: {'val_loss': 22380.91015625, 'hp_metric': 22380.91015625}
train_model result: {'val_loss': 23910.111328125, 'hp_metric': 23910.111328125}
train_model result: {'val_loss': 23796.3828125, 'hp_metric': 23796.3828125}
train_model result: {'val_loss': 5523.42138671875, 'hp_metric': 5523.42138671875}
train_model result: {'val_loss': 22435.35546875, 'hp_metric': 22435.35546875}
train_model result: {'val_loss': 22645.388671875, 'hp_metric': 22645.388671875}
train_model result: {'val_loss': 7792.2529296875, 'hp_metric': 7792.2529296875}
spotpython tuning: 5523.42138671875 [----------] 3.05% 
train_model result: {'val_loss': 21968.62890625, 'hp_metric': 21968.62890625}
spotpython tuning: 5523.42138671875 [##--------] 15.93% 
train_model result: {'val_loss': 23941.822265625, 'hp_metric': 23941.822265625}
spotpython tuning: 5523.42138671875 [##--------] 20.45% 
train_model result: {'val_loss': 23916.990234375, 'hp_metric': 23916.990234375}
spotpython tuning: 5523.42138671875 [##--------] 22.92% 
train_model result: {'val_loss': 4589.27880859375, 'hp_metric': 4589.27880859375}
spotpython tuning: 4589.27880859375 [###-------] 29.59% 
train_model result: {'val_loss': 5450.64453125, 'hp_metric': 5450.64453125}
spotpython tuning: 4589.27880859375 [####------] 36.07% 
train_model result: {'val_loss': 11993.2900390625, 'hp_metric': 11993.2900390625}
spotpython tuning: 4589.27880859375 [####------] 40.14% 
train_model result: {'val_loss': 18367.02734375, 'hp_metric': 18367.02734375}
spotpython tuning: 4589.27880859375 [#######---] 67.81% 
train_model result: {'val_loss': 4835.94921875, 'hp_metric': 4835.94921875}
spotpython tuning: 4589.27880859375 [#######---] 74.61% 
train_model result: {'val_loss': 2918.798828125, 'hp_metric': 2918.798828125}
spotpython tuning: 2918.798828125 [########--] 82.27% 
train_model result: {'val_loss': 22200.45703125, 'hp_metric': 22200.45703125}
spotpython tuning: 2918.798828125 [#########-] 89.25% 
train_model result: {'val_loss': nan, 'hp_metric': nan}
train_model result: {'val_loss': 5188.3837890625, 'hp_metric': 5188.3837890625}
spotpython tuning: 2918.798828125 [#########-] 94.02% 
train_model result: {'val_loss': 20643.349609375, 'hp_metric': 20643.349609375}
spotpython tuning: 2918.798828125 [##########] 100.00% Done...

Experiment saved to CondNet_01_res.pkl

49.1 Looking at the Results

49.1.1 Tuning Progress

After the hyperparameter tuning run is finished, the progress of the hyperparameter tuning can be visualized with spotpython’s method plot_progress. The black points represent the performace values (score or metric) of hyperparameter configurations from the initial design, whereas the red points represents the hyperparameter configurations found by the surrogate model based optimization.

spot_tuner.plot_progress()

49.1.2 Tuned Hyperparameters and Their Importance

Results can be printed in tabular form.

from spotpython.utils.eda import print_res_table
print_res_table(spot_tuner)
| name           | type   | default   |   lower |   upper | tuned                 | transform             |   importance | stars   |
|----------------|--------|-----------|---------|---------|-----------------------|-----------------------|--------------|---------|
| l1             | int    | 3         |     3.0 |     4.0 | 4.0                   | transform_power_2_int |         0.03 |         |
| epochs         | int    | 4         |     3.0 |     7.0 | 7.0                   | transform_power_2_int |         0.02 |         |
| batch_size     | int    | 4         |     4.0 |     5.0 | 4.0                   | transform_power_2_int |         0.02 |         |
| act_fn         | factor | ReLU      |     0.0 |     5.0 | LeakyReLU             | None                  |         0.02 |         |
| optimizer      | factor | SGD       |     0.0 |     2.0 | Adadelta              | None                  |         0.02 |         |
| dropout_prob   | float  | 0.01      |     0.0 |   0.025 | 6.391858037193926e-08 | None                  |         5.24 | *       |
| lr_mult        | float  | 1.0       |     0.1 |    20.0 | 2.0155424752084863    | None                  |         0.02 |         |
| patience       | int    | 2         |     2.0 |     3.0 | 2.0                   | transform_power_2_int |         0.02 |         |
| batch_norm     | factor | 0         |     0.0 |     1.0 | 0                     | None                  |       100.00 | ***     |
| initialization | factor | Default   |     0.0 |     4.0 | kaiming_uniform       | None                  |         0.02 |         |

A histogram can be used to visualize the most important hyperparameters.

spot_tuner.plot_importance(threshold=1.0)

spot_tuner.plot_important_hyperparameter_contour(max_imp=3)
l1:  0.030319973009095193
epochs:  0.018848160830909
batch_size:  0.0171083730383338
act_fn:  0.017649082757451858
optimizer:  0.024579854097065482
dropout_prob:  5.236464260686369
lr_mult:  0.015481768141873367
patience:  0.022922948290482713
batch_norm:  100.0
initialization:  0.02277159394652154

49.1.3 Get the Tuned Architecture

import pprint
from spotpython.hyperparameters.values import get_tuned_architecture
config = get_tuned_architecture(spot_tuner)
pprint.pprint(config)
{'act_fn': LeakyReLU(),
 'batch_norm': False,
 'batch_size': 16,
 'dropout_prob': 6.391858037193926e-08,
 'epochs': 128,
 'initialization': 'kaiming_uniform',
 'l1': 16,
 'lr_mult': 2.0155424752084863,
 'optimizer': 'Adadelta',
 'patience': 4}