import numpy as np
import matplotlib.pyplot as plt
from spotpython.fun.objectivefunctions import Analytical
from spotpython.utils.init import fun_control_init, surrogate_control_init
from spotpython.spot import Spot
17 User-Specified Functions: Extending the Analytical Class
This chapter illustrates how user-specified functions can be optimized and analyzed. It covers singe-objective function in Section 17.2 and multi-objective functions in Section 17.6, and how to use the spotpython
package to optimize them. It shows a simple approach to define a user-specified function, both for single- and multi-objective optimization, and how to extend the Analytical
class to create a custom function.
- If this document has been useful to you and you wish to cite it in a scientific publication, please refer to the following paper, which can be found on arXiv: https://arxiv.org/abs/2307.10262.
@ARTICLE{bart23iArXiv,
author = {{Bartz-Beielstein}, Thomas},
title = "{Hyperparameter Tuning Cookbook:
A guide for scikit-learn, PyTorch, river, and spotpython}",
journal = {arXiv e-prints},
keywords = {Computer Science - Machine Learning,
Computer Science - Artificial Intelligence, 90C26, I.2.6, G.1.6},
year = 2023,
month = jul,
eid = {arXiv:2307.10262},
doi = {10.48550/arXiv.2307.10262},
archivePrefix = {arXiv},
eprint = {2307.10262},
primaryClass = {cs.LG}
}
17.1 Software Requirements
- The code examples in this chapter require the
spotpython
package, which can be installed viapip
. - Furthermore, the following Python packages are required:
17.2 The Single-Objective Function: User Specified
We will use an analytical objective function, i.e., a function that can be described by a (closed) formula: \[ f(x) = \sum_i^k x_i^4. \]
This function is continuous, convex and unimodal. Since it returns one value for each input vector, it is a single-objective function. Multiple-objective functions can also be handled by spotpython
. They are covered in Section 17.6.
The global minimum of the single-objective function is \[ f(x) = 0, \text{at } x = (0,0, \ldots, 0). \]
It can be implemented in Python as follows:
def user_fun(X):
return(np.sum((X) **4, axis=1))
For example, if we have \(X = (1, 2, 3)\), then \[ f(x) = 1^4 + 2^4 + 3^4 = 1 + 16 + 81 = 98, \] and if we have \(X = (4, 5, 6)\), then \[ f(x) = 4^4 + 5^4 + 6^4 = 256 + 625 + 1296 = 2177. \]
We can pass a 2D array to the function, and it will return a 1D array with the results for each row:
1, 2, 3], [4, 5, 6]])) user_fun(np.array([[
array([ 98, 2177])
To make user_fun
compatible with the spotpython
package, we need to extend its argument list, so that it can handle the fun_control
dictionary.
def user_fun(X, fun_control=None):
return(np.sum((X) **4, axis=1))
Alternatively, you can add the **kwargs
argument to the function, which will allow you to pass any additional keyword arguments:
def user_fun(X, **kwargs):
return(np.sum((X) **4, axis=1))
= fun_control_init(
fun_control = np.array( [-1, -1]),
lower = np.array([1, 1]),
upper
)= Spot(fun=user_fun,
S =fun_control)
fun_control
S.run() S.plot_progress()
spotpython tuning: 3.715394917589437e-05 [#######---] 73.33%
spotpython tuning: 3.715394917589437e-05 [########--] 80.00%
spotpython tuning: 3.715394917589437e-05 [#########-] 86.67%
spotpython tuning: 3.715394917589437e-05 [#########-] 93.33%
spotpython tuning: 1.3840535984457729e-05 [##########] 100.00% Done...
Experiment saved to 000_res.pkl
spotpython
with Single-Objective User-Specified Functions
spotpython
accepts user-specified functions that can be defined in Python.- The function should accept a 2D array as input and return a 1D array as output.
- The function can be defined with an additional argument
fun_control
to handle control parameters. - The
fun_control
dictionary can be initialized with thefun_control_init
function, which allows you to specify the bounds of the input variables.
17.3 The Objective Function: Extending the Analytical Class
- The
Analytical
class is a base class for analytical functions in thespotpython
package. - It provides a framework for defining and evaluating analytical functions, including the ability to add noise to the output.
- The
Analytical
class can be extended as follows:
from typing import Optional, Dict
class UserAnalytical(Analytical):
def fun_user_function(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
"""
Custom new function: f(x) = x^4
Args:
X (np.ndarray): Input data as a 2D array.
fun_control (Optional[Dict]): Control parameters for the function.
Returns:
np.ndarray: Computed values with optional noise.
Examples:
>>> import numpy as np
>>> X = np.array([[1, 2, 3], [4, 5, 6]])
>>> fun = UserAnalytical()
>>> fun.fun_user_function(X)
"""
= self._prepare_input_data(X, fun_control)
X
= np.ones(X.shape[1]) * self.offset
offset = np.sum((X - offset) **4, axis=1)
y
# Add noise if specified in fun_control
return self._add_noise(y)
- In comparison to the
user_fun
function, theUserAnalytical
class provides additional functionality, such as adding noise to the output and preparing the input data. - First, we use the
user_fun
function as above.
= UserAnalytical()
user_fun = np.array([[0, 0, 0], [1, 1, 1]])
X = user_fun.fun_user_function(X)
results print(results)
[0. 3.]
- Then we can add an offset to the function, which will shift the function by a constant value. This is useful for testing the optimization algorithm’s ability to find the global minimum.
= UserAnalytical(offset=1.0)
user_fun = np.array([[0, 0, 0], [1, 1, 1]])
X = user_fun.fun_user_function(X)
results print(results)
[3. 0.]
- And, we can add noise to the function, which will add a random value to the output. This is useful for testing the optimization algorithm’s ability to find the global minimum in the presence of noise.
= UserAnalytical(sigma=1.0)
user_fun = np.array([[0, 0, 0], [1, 1, 1]])
X = user_fun.fun_user_function(X)
results print(results)
[0.06691138 3.11495313]
- Here is an example of how to use the
UserAnalytical
class with thespotpython
package:
= UserAnalytical().fun_user_function
user_fun = fun_control_init(
fun_control ="USER",
PREFIX= -1.0*np.ones(2),
lower = np.ones(2),
upper =["User Pressure", "User Temp"],
var_name=True,
TENSORBOARD_CLEAN=True)
tensorboard_log= Spot(fun=user_fun,
spot_user =fun_control)
fun_control spot_user.run()
Moving TENSORBOARD_PATH: runs/ to TENSORBOARD_PATH_OLD: runs_OLD/runs_2025_03_29_09_54_39_0
Created spot_tensorboard_path: runs/spot_logs/USER_maans08_2025-03-29_09-54-39 for SummaryWriter()
spotpython tuning: 3.715394917589437e-05 [#######---] 73.33%
spotpython tuning: 3.715394917589437e-05 [########--] 80.00%
spotpython tuning: 3.715394917589437e-05 [#########-] 86.67%
spotpython tuning: 3.715394917589437e-05 [#########-] 93.33%
spotpython tuning: 1.3840535984457729e-05 [##########] 100.00% Done...
Experiment saved to USER_res.pkl
<spotpython.spot.spot.Spot at 0x114806960>
17.4 Results
= spot_user.print_results() _
min y: 1.3840535984457729e-05
User Pressure: 0.060781734267030006
User Temp: 0.020927320560756916
spot_user.plot_progress()
17.5 A Contour Plot
We can select two dimensions, say \(i=0\) and \(j=1\), and generate a contour plot as follows.
We have specified identical min_z
and max_z
values to generate comparable plots.
=0, j=1, min_z=0, max_z=2.25) spot_user.plot_contour(i
- The variable importance:
= spot_user.print_importance() _
User Pressure: 77.95830652608618
User Temp: 100.0
spot_user.plot_importance()
17.6 Multi-Objective Functions
- The
spotpython
package can also handle multi-objective functions, which are functions that return multiple values for each input vector. - As noted in Section 17.2, in the single-objective case, the function returns one value for each input vector and
spotpython
expects a 1D array as output. - If the function returns a 2D array as output,
spotpython
will treat it as a multi-objective function result.
17.6.1 Response Surface Experiment
Myers, Montgomery, and Anderson-Cook (2016) describe a response surface experiment where three input variables (reaction time
, reaction temperature
, and percent catalyst
) were used to model two characteristics of a chemical reaction: percent conversion
and thermal activity
. Their model is based on the following equations:
\[\begin{align*} f_{\text{con}}(x) = & 81.09 + 1.0284 \cdot x_1 + 4.043 \cdot x_2 + 6.2037 \cdot x_3 + 1.8366 \cdot x_1^2 + 2.9382 \cdot x_2^2 \\ & + 5.1915 \cdot x_3^2 + 2.2150 \cdot x_1 \cdot x_2 + 11.375 \cdot x_1 \cdot x_3 + 3.875 \cdot x_2 \cdot x_3 \end{align*}\] and \[\begin{align*} f_{\text{act}}(x) = & 59.85 + 3.583 \cdot x_1 + 0.2546 \cdot x_2 + 2.2298 \cdot x_3 + 0.83479 \cdot x_1^2 + 0.07484 \cdot x_2^2 \\ & + 0.05716 \cdot x_3^2 + 0.3875 \cdot x_1 \cdot x_2 + 0.375 \cdot x_1 \cdot x_3 + 0.3125 \cdot x_2 \cdot x_3. \end{align*}\]
17.6.1.1 Defining the Multi-Objective Function myer16a
- The multi-objective function
myer16a
combines the results of two single-objective functions: conversion and activity. - It is implemented in
spotpython
as follows:
import numpy as np
def conversion_pred(X):
"""
Compute conversion predictions for each row in the input array.
Args:
X (np.ndarray): 2D array where each row is a configuration.
Returns:
np.ndarray: 1D array of conversion predictions.
"""
return (
81.09
+ 1.0284 * X[:, 0]
+ 4.043 * X[:, 1]
+ 6.2037 * X[:, 2]
- 1.8366 * X[:, 0]**2
+ 2.9382 * X[:, 1]**2
- 5.1915 * X[:, 2]**2
+ 2.2150 * X[:, 0] * X[:, 1]
+ 11.375 * X[:, 0] * X[:, 2]
- 3.875 * X[:, 1] * X[:, 2]
)
def activity_pred(X):
"""
Compute activity predictions for each row in the input array.
Args:
X (np.ndarray): 2D array where each row is a configuration.
Returns:
np.ndarray: 1D array of activity predictions.
"""
return (
59.85
+ 3.583 * X[:, 0]
+ 0.2546 * X[:, 1]
+ 2.2298 * X[:, 2]
+ 0.83479 * X[:, 0]**2
+ 0.07484 * X[:, 1]**2
+ 0.05716 * X[:, 2]**2
- 0.3875 * X[:, 0] * X[:, 1]
- 0.375 * X[:, 0] * X[:, 2]
+ 0.3125 * X[:, 1] * X[:, 2]
)
def fun_myer16a(X, fun_control=None):
"""
Compute both conversion and activity predictions for each row in the input array.
Args:
X (np.ndarray): 2D array where each row is a configuration.
fun_control (dict, optional): Additional control parameters (not used here).
Returns:
np.ndarray: 2D array where each row contains [conversion_pred, activity_pred].
"""
return np.column_stack((conversion_pred(X), activity_pred(X)))
Now the function returns a 2D array with two columns, one for each objective function. The first column corresponds to the conversion prediction, and the second column corresponds to the activity prediction.
= np.array([[1, 2, 3], [4, 5, 6]])
X = fun_myer16a(X)
results print(results)
[[ 87.3132 72.25519]
[200.8662 98.7442 ]]
17.6.1.2 Using a Weighted Sum
- The
spotpython
package can also handle multi-objective functions, which are functions that return multiple values for each input vector. - In this case, we can use a weighted sum to combine the two objectives into a single objective function.
- The function
aggergate
takes the two objectives and combines them into a single objective function by applying weights to each objective. - The weights can be adjusted to give more importance to one objective over the other.
- For example, if we want to give more importance to the conversion prediction, we can set the weight for the conversion prediction to 2 and the weight for the activity prediction to 0.1.
# Weight first objective with 2, second with 1/10
def aggregate(y):
return np.sum(y*np.array([2, 0.1]), axis=1)
The aggregate
function object is passed to the fun_control
dictionary aas the fun_mo2so
argument.
= fun_control_init(
fun_control = np.array( [0, 0, 0]),
lower = np.array([1, 1, 1]),
upper =aggregate)
fun_mo2so= Spot(fun=fun_myer16a,
S =fun_control)
fun_control
S.run() S.plot_progress()
spotpython tuning: 171.80857385373776 [#######---] 73.33%
spotpython tuning: 168.16500000000002 [########--] 80.00%
spotpython tuning: 168.16500000000002 [#########-] 86.67%
spotpython tuning: 166.99037900000002 [#########-] 93.33%
spotpython tuning: 166.99037900000002 [##########] 100.00% Done...
Experiment saved to 000_res.pkl
If no fun_mo2so
function is specified, the spotpython
package will use the first return value of the multi-objective function as the single objective function.
spotpython
allows access to the complete history of multi-objective return values. They are stored in the y_mo
attribute of the Spot
object. The y_mo
attribute is a 2D array where each row corresponds to a configuration and each column corresponds to an objective function. These values can be visualized as shown in Figure 17.1.
= S.y_mo
y_mo = S.y
y 0, len(y_mo))
plt.xlim(0.9 * np.min(y_mo), 1.1* np.max(y))
plt.ylim(range(len(y_mo)), y_mo[:, 0], label='Conversion', marker='o')
plt.scatter(range(len(y_mo)), y_mo[:, 1], label='Activity', marker='x')
plt.scatter(0]), label='Cum. Min Conversion')
plt.plot(np.minimum.accumulate(y_mo[:, 1]), label='Cum. Min Activity')
plt.plot(np.minimum.accumulate(y_mo[:, range(len(y)), y, label='Agg. Result', marker='D', color='red')
plt.scatter(='Cum. Min Agg. Res.', color='red')
plt.plot(np.minimum.accumulate(y), label'Iteration')
plt.xlabel('Objective Function Value')
plt.ylabel(
plt.grid()'Single- and Multi-Obj. Function Values')
plt.title(='upper left', bbox_to_anchor=(1, 1))
plt.legend(loc
plt.tight_layout() plt.show()

Since all values from the multi-objective functions can be accessed, more sophisticated multi-objective optimization methods can be implemented. For example, the spotpython
package provides a pareto_front
function that can be used to compute the Pareto front of the multi-objective function values, see pareto. The Pareto front is a set of solutions that are not dominated by any other solution in the objective space.
spotpython
with Multi-Objective User-Specified Functions
spotpython
accepts user-specified multi-objective functions that can be defined in Python.- The function should accept a 2D array as input and return a 2D array as output.
- An
aggregate
function can be used to combine multiple objectives into a single objective function.
17.7 Jupyter Notebook
- The Jupyter-Notebook of this lecture is available on GitHub in the Hyperparameter-Tuning-Cookbook Repository