14  Optimal Computational Budget Allocation in Spot

This chapter demonstrates how noisy functions can be handled with Optimal Computational Budget Allocation (OCBA) by Spot.

14.1 Example: Spot, OCBA, and the Noisy Sphere Function

import numpy as np
from math import inf
from spotpython.fun.objectivefunctions import Analytical
from spotpython.spot import Spot
import matplotlib.pyplot as plt
from spotpython.utils.init import fun_control_init, get_spot_tensorboard_path
from spotpython.utils.init import fun_control_init, design_control_init, surrogate_control_init

PREFIX = "09"

14.1.1 The Objective Function: Noisy Sphere

The spotpython package provides several classes of objective functions. We will use an analytical objective function with noise, i.e., a function that can be described by a (closed) formula: \[f(x) = x^2 + \epsilon\]

Since sigma is set to 0.1, noise is added to the function:

fun = Analytical().fun_sphere
fun_control = fun_control_init(
    PREFIX=PREFIX,
    sigma=0.1)

A plot illustrates the noise:

x = np.linspace(-1,1,100).reshape(-1,1)
y = fun(x, fun_control=fun_control)
plt.figure()
plt.plot(x,y, "k")
plt.show()

Spot is adopted as follows to cope with noisy functions:

  1. fun_repeats is set to a value larger than 1 (here: 2)
  2. noise is set to true. Therefore, a nugget (Lambda) term is added to the correlation matrix
  3. init size (of the design_control dictionary) is set to a value larger than 1 (here: 2)
spot_1_noisy = Spot(fun=fun,
                   fun_control=fun_control_init( 
                   lower = np.array([-1]),
                   upper = np.array([1]),
                   fun_evals = 20,
                   fun_repeats = 2,
                   infill_criterion="ei",
                   noise = True,
                   tolerance_x=0.0,
                   ocba_delta = 1,                   
                   show_models=True),
                   design_control=design_control_init(init_size=3, repeats=2),
                   surrogate_control=surrogate_control_init(noise=True))
Experiment saved to 000_exp.pkl
spot_1_noisy.run()

spotpython tuning: 0.008919341332677182 [####------] 40.00% 

spotpython tuning: 0.008919341332677182 [#####-----] 50.00% 

spotpython tuning: 6.82082870070088e-05 [######----] 60.00% 

spotpython tuning: 3.692698488681066e-06 [#######---] 70.00% 

spotpython tuning: 1.3740935234320857e-06 [########--] 80.00% 

spotpython tuning: 1.3740935234320857e-06 [#########-] 90.00% 

spotpython tuning: 1.3740935234320857e-06 [##########] 100.00% Done...

Experiment saved to 000_res.pkl

14.3 Noise and Surrogates: The Nugget Effect

14.3.1 The Noisy Sphere

14.3.1.1 The Data

We prepare some data first:

import numpy as np
import spotpython
from spotpython.fun.objectivefunctions import Analytical
from spotpython.spot import Spot
from spotpython.design.spacefilling import SpaceFilling
from spotpython.build.kriging import Kriging
import matplotlib.pyplot as plt

gen = SpaceFilling(1)
rng = np.random.RandomState(1)
lower = np.array([-10])
upper = np.array([10])
fun = Analytical().fun_sphere
fun_control = fun_control_init(    
    sigma=2,
    seed=125)
X = gen.scipy_lhd(10, lower=lower, upper = upper)
y = fun(X, fun_control=fun_control)
X_train = X.reshape(-1,1)
y_train = y

A surrogate without nugget is fitted to these data:

S = Kriging(name='kriging',
            seed=123,
            log_level=50,
            n_theta=1,
            noise=False)
S.fit(X_train, y_train)

X_axis = np.linspace(start=-13, stop=13, num=1000).reshape(-1, 1)
mean_prediction, std_prediction, ei = S.predict(X_axis, return_val="all")

plt.scatter(X_train, y_train, label="Observations")
plt.plot(X_axis, mean_prediction, label="mue")
plt.legend()
plt.xlabel("$x$")
plt.ylabel("$f(x)$")
_ = plt.title("Sphere: Gaussian process regression on noisy dataset")

In comparison to the surrogate without nugget, we fit a surrogate with nugget to the data:

S_nug = Kriging(name='kriging',
            seed=123,
            log_level=50,
            n_theta=1,
            noise=True)
S_nug.fit(X_train, y_train)
X_axis = np.linspace(start=-13, stop=13, num=1000).reshape(-1, 1)
mean_prediction, std_prediction, ei = S_nug.predict(X_axis, return_val="all")
plt.scatter(X_train, y_train, label="Observations")
plt.plot(X_axis, mean_prediction, label="mue")
plt.legend()
plt.xlabel("$x$")
plt.ylabel("$f(x)$")
_ = plt.title("Sphere: Gaussian process regression with nugget on noisy dataset")

The value of the nugget term can be extracted from the model as follows:

S.Lambda
S_nug.Lambda
np.float64(9.867759985778659e-05)

We see:

  • the first model S has no nugget,
  • whereas the second model has a nugget value (Lambda) larger than zero.

14.4 Exercises

14.4.1 Noisy fun_cubed

Analyse the effect of noise on the fun_cubed function with the following settings:

fun = Analytical().fun_cubed
fun_control = fun_control_init(    
    sigma=10,
    seed=123)
lower = np.array([-10])
upper = np.array([10])

14.4.2 fun_runge

Analyse the effect of noise on the fun_runge function with the following settings:

lower = np.array([-10])
upper = np.array([10])
fun = Analytical().fun_runge
fun_control = fun_control_init(    
    sigma=0.25,
    seed=123)

14.4.3 fun_forrester

Analyse the effect of noise on the fun_forrester function with the following settings:

lower = np.array([0])
upper = np.array([1])
fun = Analytical().fun_forrester
fun_control = {"sigma": 5,
               "seed": 123}

14.4.4 fun_xsin

Analyse the effect of noise on the fun_xsin function with the following settings:

lower = np.array([-1.])
upper = np.array([1.])
fun = Analytical().fun_xsin
fun_control = fun_control_init(    
    sigma=0.5,
    seed=123)