Skip to content

eval_bml

ResourceMonitor

A context manager for monitoring resource usage.

Parameters:

Name Type Description Default
name str

A description of the resource usage. Defaults to None.

None

Raises:

Type Description
ResourceMonitorError

If the resource monitor is already tracing memory usage.

Returns:

Type Description
ResourceMonitor

A ResourceMonitor object.

Examples:

>>> import time
>>> from spotRiver.evaluation.eval_bml import ResourceMonitor
>>> with ResourceMonitor() as rm:
...     time.sleep(1)
...     print(rm.result())
Resource usage:
    Time [s]: 1.000000001
    Memory [b]: 0.0
Source code in spotRiver/evaluation/eval_bml.py
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
class ResourceMonitor:
    """
    A context manager for monitoring resource usage.

    Args:
        name (str, optional): A description of the resource usage. Defaults to None.

    Raises:
        (ResourceMonitorError): If the resource monitor is already tracing memory usage.

    Returns:
        (ResourceMonitor): A ResourceMonitor object.

    Examples:
        >>> import time
        >>> from spotRiver.evaluation.eval_bml import ResourceMonitor
        >>> with ResourceMonitor() as rm:
        ...     time.sleep(1)
        ...     print(rm.result())
        Resource usage:
            Time [s]: 1.000000001
            Memory [b]: 0.0
    """

    def __init__(self, name: Optional[str] = None):
        self.name = name
        self.r_time = None
        self.memory = None
        self.current_memory = None
        self.peak_memory = None
        self._start = None

    def __enter__(self):
        if tracemalloc.is_tracing():
            raise ResourceMonitorError("Already tracing memory usage!")
        tracemalloc.start()
        tracemalloc.reset_peak()
        self._start = time.perf_counter_ns()

    def __exit__(self, type, value, traceback):
        self.r_time = (time.perf_counter_ns() - self._start) / 1.0e9
        _, peak = tracemalloc.get_traced_memory()
        self.memory = peak / (1024 * 1024)
        tracemalloc.stop()

    def result(self):
        """Returns a ResourceUsage object with the results of the resource monitor.

        Raises:
            (ResourceMonitorError): If the resource monitor has not been used yet.

        Returns:
            (ResourceUsage): A ResourceUsage object.

        Examples:
            >>> import time
            >>> from spotRiver.evaluation.eval_bml import ResourceMonitor
            >>> with ResourceMonitor() as rm:
            ...     time.sleep(1)
            ...     print(rm.result())
            Resource usage:
                Time [s]: 1.000000001
                Memory [b]: 0.0
        """
        if self.r_time is None or self.memory is None:
            raise ResourceMonitorError("No resources monitored yet.")
        return ResourceUsage(name=self.name, r_time=self.r_time, memory=self.memory)

result()

Returns a ResourceUsage object with the results of the resource monitor.

Raises:

Type Description
ResourceMonitorError

If the resource monitor has not been used yet.

Returns:

Type Description
ResourceUsage

A ResourceUsage object.

Examples:

>>> import time
>>> from spotRiver.evaluation.eval_bml import ResourceMonitor
>>> with ResourceMonitor() as rm:
...     time.sleep(1)
...     print(rm.result())
Resource usage:
    Time [s]: 1.000000001
    Memory [b]: 0.0
Source code in spotRiver/evaluation/eval_bml.py
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def result(self):
    """Returns a ResourceUsage object with the results of the resource monitor.

    Raises:
        (ResourceMonitorError): If the resource monitor has not been used yet.

    Returns:
        (ResourceUsage): A ResourceUsage object.

    Examples:
        >>> import time
        >>> from spotRiver.evaluation.eval_bml import ResourceMonitor
        >>> with ResourceMonitor() as rm:
        ...     time.sleep(1)
        ...     print(rm.result())
        Resource usage:
            Time [s]: 1.000000001
            Memory [b]: 0.0
    """
    if self.r_time is None or self.memory is None:
        raise ResourceMonitorError("No resources monitored yet.")
    return ResourceUsage(name=self.name, r_time=self.r_time, memory=self.memory)

eval_bml_horizon(model, train, test, target_column, horizon, include_remainder=True, metric=None)

Evaluate a machine learning model on a rolling horizon basis. This function evaluates a machine learning model on a rolling horizon basis. The model is trained on the training data and then evaluated on the test data using a given evaluation metric. The evaluation results are returned as a tuple of two data frames. The first one contains evaluation metrics for each window. The second one contains the true and predicted values for each observation in the test set.

Parameters:

Name Type Description Default
model object

The model to be evaluated.

required
train DataFrame

The training data set.

required
test DataFrame

The testing data set.

required
target_column str

The name of the column containing the target variable.

required
horizon int

The number of steps ahead to forecast.

required
include_remainder bool

Whether to include the remainder of the test dataframe if its length is not divisible by the horizon. Defaults to True.

True
metric object

An evaluation metric object that has an evaluate method. This metric will be used to evaluate the model’s performance on the test dataset.

None

Returns:

Name Type Description
tuple tuple

A tuple of two data frames.

tuple

The first one contains evaluation metrics for each window.

tuple

The second one contains the true and predicted values for each observation in the test set.

Examples:

>>> from sklearn.linear_model import LinearRegression
>>> model = LinearRegression()
>>> train = pd.DataFrame({"x": [1, 2, 3], "y": [2, 4, 6]})
>>> test = pd.DataFrame({"x": [4, 5], "y": [8, 10]})
>>> df_eval, df_true = eval_bml_horizon(model, train, test, "y", horizon=1)
>>> print(df_eval)
      Metric  Memory (MB)  CompTime (s)
0  0.000000          0.0           0.0
1  0.000000          0.0           0.0
...        ...          ...           ...
Source code in spotRiver/evaluation/eval_bml.py
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
def eval_bml_horizon(
    model: object,
    train: pd.DataFrame,
    test: pd.DataFrame,
    target_column: str,
    horizon: int,
    include_remainder: bool = True,
    metric: object = None,
) -> tuple:
    """
    Evaluate a machine learning model on a rolling horizon basis.
    This function evaluates a machine learning model on a rolling horizon basis.
    The model is trained on the training data and then evaluated on the test data
    using a given evaluation metric. The evaluation results are returned as a tuple
    of two data frames. The first one contains evaluation metrics for each window.
    The second one contains the true and predicted values for each observation in the test set.

    Args:
        model (object): The model to be evaluated.
        train (pd.DataFrame): The training data set.
        test (pd.DataFrame): The testing data set.
        target_column (str): The name of the column containing the target variable.
        horizon (int, optional): The number of steps ahead to forecast.
        include_remainder (bool):
            Whether to include the remainder of the test dataframe if its length
            is not divisible by the horizon. Defaults to True.
        metric (object):
            An evaluation metric object that has an `evaluate` method.
            This metric will be used to evaluate the model's performance on the test dataset.

    Returns:
        tuple: A tuple of two data frames.
        The first one contains evaluation metrics for each window.
        The second one contains the true and predicted values for each observation in the test set.

    Examples:
        >>> from sklearn.linear_model import LinearRegression
        >>> model = LinearRegression()
        >>> train = pd.DataFrame({"x": [1, 2, 3], "y": [2, 4, 6]})
        >>> test = pd.DataFrame({"x": [4, 5], "y": [8, 10]})
        >>> df_eval, df_true = eval_bml_horizon(model, train, test, "y", horizon=1)
        >>> print(df_eval)
              Metric  Memory (MB)  CompTime (s)
        0  0.000000          0.0           0.0
        1  0.000000          0.0           0.0
        ...        ...          ...           ...

    """
    # Check if metric is None or null and raise ValueError if it is
    if metric is None:
        raise ValueError("The 'metric' parameter must not be None or null.")
    # Reset index of train and test dataframes
    train = train.reset_index(drop=True)
    test = test.reset_index(drop=True)
    # Initialize lists for predictions and differences
    preds_list = []
    diffs_list = []
    # Fit the model on the training data
    rm = ResourceMonitor()
    with rm:
        model.fit(train.loc[:, train.columns != target_column], train[target_column])
    # Evaluate the model on empty arrays to get initial resource usage
    df_eval = pd.DataFrame.from_dict(
        [evaluate_model(y_true=np.array([]), y_pred=np.array([]), memory=rm.memory, r_time=rm.r_time, metric=metric)]
    )
    # If include_remainder is False, remove remainder rows from test dataframe
    if include_remainder is False:
        remainder = len(test) % horizon
        if remainder > 0:
            test = test[:-remainder]
    # Evaluate the model on batches of size horizon from the test dataframe
    for batch_number, batch_df in test.groupby(np.arange(len(test)) // horizon):
        rm = ResourceMonitor()
        with rm:
            preds = model.predict(batch_df.loc[:, batch_df.columns != target_column])
        diffs = batch_df[target_column].values - preds
        df_eval.loc[batch_number + 1] = pd.Series(
            evaluate_model(
                y_true=batch_df[target_column],
                y_pred=preds,
                memory=rm.memory,
                r_time=rm.r_time,
                metric=metric,
            )
        )
        # Append predictions and differences to their respective lists
        preds_list.append(preds)
        diffs_list.append(diffs)
    # Concatenate predictions and differences lists into series
    series_preds = pd.Series(np.concatenate(preds_list))
    series_diffs = pd.Series(np.concatenate(diffs_list))
    # Create a dataframe with true values and add columns for predictions and differences
    df_true = pd.DataFrame(test[target_column])
    df_true["Prediction"] = series_preds
    df_true["Difference"] = series_diffs
    return df_eval, df_true

eval_bml_landmark(model, train, test, target_column, horizon, include_remainder=True, metric=None)

Evaluate a machine learning model on a rolling landmark basis.

This function evaluates a machine learning model on a rolling landmark basis. The model is trained on the training data and then evaluated on the test data using a given evaluation metric. The evaluation results are returned as a tuple of two data frames. The first one contains evaluation metrics for each window. The second one contains the true and predicted values for each observation in the test set.

Parameters:

Name Type Description Default
model object

The model to be evaluated.

required
train DataFrame

The training data set.

required
test DataFrame

The testing data set.

required
target_column str

The name of the column containing the target variable.

required
horizon int

The number of steps ahead to forecast.

required
include_remainder bool

Whether to include the remainder of the test dataframe if its length is not divisible by the horizon. Defaults to True.

True
metric object

An evaluation metric object that has an evaluate method. This metric will be used to evaluate the model’s performance on the test dataset.

None

Returns:

Name Type Description
tuple tuple

A tuple of two data frames. The first one contains evaluation metrics for each window. The second one contains the true and predicted values for each observation in the test set.

Examples:

>>> from sklearn.linear_model import LinearRegression
>>> model = LinearRegression()
>>> train = pd.DataFrame({"x": [1, 2, 3], "y": [2, 4, 6]})
>>> test = pd.DataFrame({"x": [4, 5], "y": [8, 10]})
>>> df_eval, df_true = eval_bml_landmark(model, train, test, "y", horizon=1)
>>> print(df_eval)
        Metric  Memory (MB)  CompTime (s)
0  0.000000          0.0           0.0
1  0.000000          0.0           0.0
...        ...          ...           ...
Source code in spotRiver/evaluation/eval_bml.py
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
def eval_bml_landmark(
    model: object,
    train: pd.DataFrame,
    test: pd.DataFrame,
    target_column: str,
    horizon: int,
    include_remainder: bool = True,
    metric: object = None,
) -> tuple:
    """Evaluate a machine learning model on a rolling landmark basis.

    This function evaluates a machine learning model on a rolling landmark basis.
    The model is trained on the training data and then evaluated on the test data
    using a given evaluation metric. The evaluation results are returned as a tuple
    of two data frames. The first one contains evaluation metrics for each window.
    The second one contains the true and predicted values for each observation in the test set.

    Args:
        model (object): The model to be evaluated.
        train (pd.DataFrame): The training data set.
        test (pd.DataFrame): The testing data set.
        target_column (str): The name of the column containing the target variable.
        horizon (int, optional): The number of steps ahead to forecast.
        include_remainder (bool): Whether to include the remainder of the test dataframe if its length is not divisible by the horizon. Defaults to True.
        metric (object):
            An evaluation metric object that has an `evaluate` method.
            This metric will be used to evaluate the model's performance on the test dataset.

    Returns:
        tuple:
            A tuple of two data frames. The first one contains evaluation metrics for each window.
            The second one contains the true and predicted values for each observation in the test set.

    Examples:
        >>> from sklearn.linear_model import LinearRegression
        >>> model = LinearRegression()
        >>> train = pd.DataFrame({"x": [1, 2, 3], "y": [2, 4, 6]})
        >>> test = pd.DataFrame({"x": [4, 5], "y": [8, 10]})
        >>> df_eval, df_true = eval_bml_landmark(model, train, test, "y", horizon=1)
        >>> print(df_eval)
                Metric  Memory (MB)  CompTime (s)
        0  0.000000          0.0           0.0
        1  0.000000          0.0           0.0
        ...        ...          ...           ...

    """
    train = train.reset_index(drop=True)
    test = test.reset_index(drop=True)
    series_preds = pd.Series(dtype=float)
    series_diffs = pd.Series(dtype=float)
    rm = ResourceMonitor()
    with rm:
        model.fit(train.loc[:, train.columns != target_column], train[target_column])
    df_eval = pd.DataFrame.from_dict(
        [evaluate_model(y_true=np.array([]), y_pred=np.array([]), memory=rm.memory, r_time=rm.r_time, metric=metric)]
    )
    if include_remainder is False:
        rem = len(test) % horizon
        if rem > 0:
            test = test[:-rem]
    # Landmark Evaluation
    for i, new_df in enumerate(gen_sliding_window(test, horizon)):
        train = pd.concat([train, new_df], ignore_index=True)
        rm = ResourceMonitor()
        with rm:
            preds = pd.Series(model.predict(new_df.loc[:, new_df.columns != target_column]))
            model.fit(train.loc[:, train.columns != target_column], train[target_column])
        diffs = new_df[target_column].values - preds
        df_eval.loc[i + 1] = pd.Series(
            evaluate_model(
                y_true=new_df[target_column],
                y_pred=preds,
                memory=rm.memory,
                r_time=rm.r_time,
                metric=metric,
            )
        )
        series_preds = pd.concat([series_preds, preds], ignore_index=True)
        series_diffs = pd.concat([series_diffs, diffs], ignore_index=True)
    df_true = pd.DataFrame(test[target_column])
    df_true["Prediction"] = series_preds
    df_true["Difference"] = series_diffs
    return df_eval, df_true

eval_bml_window(model, train, test, target_column, horizon, include_remainder=True, metric=None)

Evaluate a model on a rolling window basis.

Parameters:

Name Type Description Default
model object

The model to be evaluated.

required
train DataFrame

The training data set.

required
test DataFrame

The testing data set.

required
target_column str

The name of the column containing the target variable.

required
horizon int

The number of steps ahead to forecast.

required

Returns:

Name Type Description
tuple tuple

A tuple of two data frames. The first one contains evaluation metrics for each window.

tuple

The second one contains the true and predicted values for each observation in the test set.

Examples:

>>> from sklearn.linear_model import LinearRegression
>>> model = LinearRegression()
>>> train = pd.DataFrame({"x": [1, 2, 3], "y": [2, 4, 6]})
>>> test = pd.DataFrame({"x": [4, 5], "y": [8, 10]})
>>> df_eval, df_true = eval_bml_window(model, train, test, "y", horizon=1)
>>> print(df_eval)
Source code in spotRiver/evaluation/eval_bml.py
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
def eval_bml_window(
    model: object,
    train: pd.DataFrame,
    test: pd.DataFrame,
    target_column: str,
    horizon: int,
    include_remainder: bool = True,
    metric: object = None,
) -> tuple:
    """Evaluate a model on a rolling window basis.

    Args:
        model (object): The model to be evaluated.
        train (pd.DataFrame): The training data set.
        test (pd.DataFrame): The testing data set.
        target_column (str): The name of the column containing the target variable.
        horizon (int, optional): The number of steps ahead to forecast.

    Returns:
        tuple: A tuple of two data frames. The first one contains evaluation metrics for each window.
        The second one contains the true and predicted values for each observation in the test set.

    Examples:
        >>> from sklearn.linear_model import LinearRegression
        >>> model = LinearRegression()
        >>> train = pd.DataFrame({"x": [1, 2, 3], "y": [2, 4, 6]})
        >>> test = pd.DataFrame({"x": [4, 5], "y": [8, 10]})
        >>> df_eval, df_true = eval_bml_window(model, train, test, "y", horizon=1)
        >>> print(df_eval)
    """
    train = train.reset_index(drop=True)
    test = test.reset_index(drop=True)
    df_all = pd.concat([train, test], ignore_index=True)
    series_preds = pd.Series(dtype=float)
    series_diffs = pd.Series(dtype=float)
    rm = ResourceMonitor()
    with rm:
        model.fit(train.loc[:, train.columns != target_column], train[target_column])
    df_eval = pd.DataFrame.from_dict(
        [evaluate_model(y_true=np.array([]), y_pred=np.array([]), memory=rm.memory, r_time=rm.r_time, metric=metric)]
    )
    if include_remainder is False:
        rem = len(test) % horizon
        if rem > 0:
            test = test[:-rem]
    for i, (w_train, w_test) in enumerate(gen_horizon_shifted_window(df_all, len(train), horizon)):
        rm = ResourceMonitor()
        with rm:
            model.fit(w_train.loc[:, w_train.columns != target_column], w_train[target_column])
            preds = pd.Series(model.predict(w_test.loc[:, w_test.columns != target_column]))
        diffs = w_test[target_column].values - preds
        df_eval.loc[i + 1] = pd.Series(
            evaluate_model(
                y_true=w_test[target_column],
                y_pred=preds,
                memory=rm.memory,
                r_time=rm.r_time,
                metric=metric,
            )
        )

        series_preds = pd.concat([series_preds, preds], ignore_index=True)
        series_diffs = pd.concat([series_diffs, diffs], ignore_index=True)

    df_true = pd.DataFrame(test[target_column])
    df_true["Prediction"] = series_preds
    df_true["Difference"] = series_diffs
    return df_eval, df_true

eval_oml_horizon(model, train, test, target_column, horizon, include_remainder=True, metric=None, oml_grace_period=None)

Evaluate an online machine learning model on a rolling horizon basis using evaluations from batch-machine learning.

This function evaluates an online-machine learning model on a rolling horizon basis. The model is trained on the training data and then evaluated on the test data using a given evaluation metric. The evaluation results are returned as a tuple of two data frames. The first one contains evaluation metrics for each window. The second one contains the true and predicted values for each observation in the test set.

Notes

First, the model is trained on the (small) training data set. No predictions are made during this initial training phase, but the memory and computation time are measured. Then, the model is evaluated on the test data set using a given (sklearn) evaluation metric. The evaluation results are returned as a tuple of two data frames.

Parameters:

Name Type Description Default
model object

The model to be evaluated. For example, a linear_model from river.

required
train DataFrame

The training data set. Should be small compared to the test data set. See also oml_grace_period below.

required
test DataFrame

The testing data set.

required
target_column str

The name of the column containing the target variable.

required
horizon int

The number of steps ahead to forecast. If set to 1, the model is evaluated and updated incrementally on the next observation in the test set. If set to 2, the model is evaluated and updated incrementally on the next two observations in the test set, and so on.

required
include_remainder bool

Whether to include the remainder of the test dataframe if its length is not divisible by the horizon. Defaults to True.

True
metric object

An evaluation metric object that has an evaluate method. This metric will be used to evaluate the model’s performance on the test dataset. Metrics from sklearn, e.g., mean_absolute_error can be used.

None
oml_grace_period int

The number of observations to use for (initial) training. Defaults to None, in which case the horizon is used. Important: Not the entire training set is used for initial training, but only the last oml_grace_period observations. This is to simulate the online setting, where the model is trained on a small subset of the training data set. If None, the horizon is used.

None

Returns:

Name Type Description
tuple Tuple[DataFrame, DataFrame]

A tuple of two data frames. The first one contains evaluation metrics for each window. The second one contains the true and predicted values for each observation in the test set.

Examples:

>>> from river import linear_model
    from river import preprocessing
    from sklearn.metrics import mean_absolute_error
    from spotRiver.evaluation.eval.bml import eval_oml_horizon
    model = (
            preprocessing.StandardScaler() |
            linear_model.LinearRegression(intercept_lr=.5)
        )
    horizon = 10
    train = pd.DataFrame({"x": np.arange(1, 11), "y": np.arange(2, 22, 2)})
    test = pd.DataFrame({"x": np.arange(11, 111), "y": np.arange(22, 222, 2)})
    target_column = "y"
    eval_oml_horizon(
        model = model,
        train = train,
        test = test,
        target_column = target_column,
        horizon = horizon,
        include_remainder = True,
        metric = metric,
        oml_grace_period = horizon,
    )
    (      Metric  Memory (MB)  CompTime (s)
    0        NaN     0.025515      0.001253
    1   1.721100     0.009296      0.001499
    2   1.700408     0.007614      0.000801
    3   1.690827     0.007833      0.002240
    4   1.685174     0.007614      0.000784
    5   1.681406     0.007614      0.000738
    6   1.678697     0.007937      0.001930
    7   1.676648     0.007614      0.000782
    8   1.675039     0.007431      0.000760
    9   1.673739     0.007431      0.000687
    10  1.672665     0.007431      0.000678,
        y  Prediction  Difference
    0    22   20.261831    1.738169
    1    24   22.267027    1.732973
    2    26   24.271507    1.728493
    3    28   26.275414    1.724586
    4    30   28.278854    1.721146
    ..  ...         ...         ...
    95  212  210.327390    1.672610
    96  214  212.327487    1.672513
    97  216  214.327581    1.672419
    98  218  216.327674    1.672326
    99  220  218.327766    1.672234
[100 rows x 3 columns])
Source code in spotRiver/evaluation/eval_bml.py
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
def eval_oml_horizon(
    model: object,
    train: pd.DataFrame,
    test: pd.DataFrame,
    target_column: str,
    horizon: int,
    include_remainder: bool = True,
    metric: object = None,
    oml_grace_period: int = None,
) -> Tuple[pd.DataFrame, pd.DataFrame]:
    """
    Evaluate an online machine learning model on a rolling horizon basis using
    evaluations from batch-machine learning.

    This function evaluates an online-machine learning model on a rolling horizon basis.
    The model is trained on the training data and then evaluated on the test data
    using a given evaluation metric. The evaluation results are returned as a tuple
    of two data frames. The first one contains evaluation metrics for each window.
    The second one contains the true and predicted values for each observation in the test set.

    Notes:
        First, the model is trained on the (small) training data set. No predictions
        are made during this initial training phase, but the memory and computation
        time are measured. Then, the model is evaluated on the test data set using a
        given (sklearn) evaluation metric.
        The evaluation results are returned as a tuple of two data frames.

    Args:
        model (object):
            The model to be evaluated. For example, a linear_model from river.
        train (pd.DataFrame):
            The training data set. Should be small compared to the test data set.
            See also oml_grace_period below.
        test (pd.DataFrame):
            The testing data set.
        target_column (str):
            The name of the column containing the target variable.
        horizon (int, optional):
            The number of steps ahead to forecast. If set to 1, the model is evaluated and updated
            incrementally on the next observation in the test set. If set to 2, the model is evaluated
            and updated incrementally on the next two observations in the test set, and so on.
        include_remainder (bool):
            Whether to include the remainder of the test dataframe if its
            length is not divisible by the horizon. Defaults to True.
        metric (object):
            An evaluation metric object that has an `evaluate` method.
            This metric will be used to evaluate the model's performance on the test dataset. Metrics
            from sklearn, e.g., mean_absolute_error can be used.
        oml_grace_period (int, optional):
            The number of observations to use for (initial) training. Defaults to None,
            in which case the horizon is used. Important: Not the entire training set is used
            for initial training, but only the last oml_grace_period observations. This is
            to simulate the online setting, where the model is trained on a small subset of
            the training data set. If None, the horizon is used.

    Returns:
        tuple:
            A tuple of two data frames.
            The first one contains evaluation metrics for each window.
            The second one contains the true and predicted values for each observation
            in the test set.

    Examples:
        >>> from river import linear_model
            from river import preprocessing
            from sklearn.metrics import mean_absolute_error
            from spotRiver.evaluation.eval.bml import eval_oml_horizon
            model = (
                    preprocessing.StandardScaler() |
                    linear_model.LinearRegression(intercept_lr=.5)
                )
            horizon = 10
            train = pd.DataFrame({"x": np.arange(1, 11), "y": np.arange(2, 22, 2)})
            test = pd.DataFrame({"x": np.arange(11, 111), "y": np.arange(22, 222, 2)})
            target_column = "y"
            eval_oml_horizon(
                model = model,
                train = train,
                test = test,
                target_column = target_column,
                horizon = horizon,
                include_remainder = True,
                metric = metric,
                oml_grace_period = horizon,
            )
            (      Metric  Memory (MB)  CompTime (s)
            0        NaN     0.025515      0.001253
            1   1.721100     0.009296      0.001499
            2   1.700408     0.007614      0.000801
            3   1.690827     0.007833      0.002240
            4   1.685174     0.007614      0.000784
            5   1.681406     0.007614      0.000738
            6   1.678697     0.007937      0.001930
            7   1.676648     0.007614      0.000782
            8   1.675039     0.007431      0.000760
            9   1.673739     0.007431      0.000687
            10  1.672665     0.007431      0.000678,
                y  Prediction  Difference
            0    22   20.261831    1.738169
            1    24   22.267027    1.732973
            2    26   24.271507    1.728493
            3    28   26.275414    1.724586
            4    30   28.278854    1.721146
            ..  ...         ...         ...
            95  212  210.327390    1.672610
            96  214  212.327487    1.672513
            97  216  214.327581    1.672419
            98  218  216.327674    1.672326
            99  220  218.327766    1.672234

            [100 rows x 3 columns])

    """
    # Check if metric is None or null and raise ValueError if it is
    if metric is None:
        raise ValueError("The 'metric' parameter must not be None or null.")
    if oml_grace_period is None:
        oml_grace_period = horizon
    train = train.reset_index(drop=True)
    test = test.reset_index(drop=True)
    if include_remainder is False:
        rem = len(test) % horizon
        if rem > 0:
            test = test[:-rem]

    # Fit the model on the train data, i.e., initial Training on Train Data.
    # This is performed on a limited subset only (oml_grace_period).
    # No predictions are made here, only the model is fitted.
    # Memory and runtime are measured for the model fitting
    train_X = train.loc[:, train.columns != target_column]
    train_y = train[target_column]
    train_X = train_X.tail(oml_grace_period)
    train_y = train_y.tail(oml_grace_period)
    rm = ResourceMonitor()
    with rm:
        for xi, yi in river_stream.iter_pandas(train_X, train_y):
            # Before v0.19 we had to call predict_one before learn_one
            # in order for the whole pipeline to be updated.
            # Since v0.19, calling learn_one in a pipeline will update each part
            # of the pipeline in turn.
            # Before v0.19, predict_one has to be called for updating the unsupervised parts
            # of the pipeline.
            # The following line, which returns y_pred, which is not used after v0.19:
            # _ = model.predict_one(xi)
            # model = model.learn_one(xi, yi)
            # Starting with 0.21.0, the learn_one and learn_many methods of each estimator don't not
            # return anything anymore.
            # This is to emphasize that the estimators are stateful.
            model.learn_one(xi, yi)

    # Create empty lists to collect data
    eval_data = []
    series_preds = []
    series_diffs = []

    # Measure the costs of the initial training:
    # Add the evaluation of the model (memory and time, not predictions) on the train data to the eval_data list
    # A metric must not be passed to the evaluate_model function, because no predictions are made here
    # If a metric is passed, it will be ignored, because no predictions are passed to the evaluation function
    # So, metric=None and metric=mean_absolute_error will both work
    # Return res_dict = {"Metric": score, "Memory (MB)": memory, "CompTime (s)": r_time}
    eval_data.append(
        evaluate_model(y_true=np.array([]), y_pred=np.array([]), memory=rm.memory, r_time=rm.r_time, metric=metric)
    )

    # Test Data Evaluation
    # A sliding window of length horizon is used to evaluate the model on the test data
    for i, new_df in enumerate(gen_sliding_window(test, horizon)):
        preds = []
        test_X = new_df.loc[:, new_df.columns != target_column]
        test_y = new_df[target_column]
        rm = ResourceMonitor()
        with rm:
            for xi, yi in river_stream.iter_pandas(test_X, test_y):
                pred = model.predict_one(xi)
                preds.append(pred)
                # model = model.learn_one(xi, yi)
                # Starting with 0.21.0, the learn_one and learn_many methods of each estimator don't not
                # return anything anymore.
                # This is to emphasize that the estimators are stateful.
                model.learn_one(xi, yi)
        preds = pd.Series(preds)
        diffs = new_df[target_column].values - preds

        # Collect data in lists
        eval_data.append(
            evaluate_model(
                y_true=new_df[target_column], y_pred=preds, memory=rm.memory, r_time=rm.r_time, metric=metric
            )
        )
        series_preds.extend(preds)
        series_diffs.extend(diffs)

    # Create DataFrames from the collected data
    df_eval = pd.DataFrame(eval_data)
    df_true = pd.DataFrame(test[target_column])
    df_true["Prediction"] = series_preds
    df_true["Difference"] = series_diffs
    return df_eval, df_true

evaluate_model(y_true, y_pred, memory, r_time, metric)

Evaluate a machine learning model on a test dataset.

This function evaluates a machine learning model on a test dataset using a given evaluation metric. The evaluation results are returned as a dictionary.

Parameters:

Name Type Description Default
y_true ndarray

A numpy array containing the true values.

required
y_pred ndarray

A numpy array containing the predicted values.

required
memory float

The memory usage of the model.

required
r_time float

The computation time of the model.

required
metric object

An evaluation metric object that has an evaluate method. This metric will be used to evaluate the model’s performance on the test dataset.

required

Returns:

Name Type Description
dict dict

A dictionary containing the evaluation results.

Examples:

>>> from sklearn.metrics import accuracy_score
>>> import numpy as np
>>> from spotRiver.evaluation.eval_bml import evaluate_model
>>> y_true = np.array([0, 1, 0, 1])
>>> y_pred = np.array([0, 1, 1, 1])
>>> memory = 0.0
>>> r_time = 0.0
>>> metric = accuracy_score
>>> evaluate_model(y_true, y_pred, memory, r_time, metric)
{'Metric': 0.75, 'Memory (MB)': 0.0, 'CompTime (s)': 0.0}
Source code in spotRiver/evaluation/eval_bml.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def evaluate_model(y_true: np.ndarray, y_pred: np.ndarray, memory: float, r_time: float, metric) -> dict:
    """
    Evaluate a machine learning model on a test dataset.

    This function evaluates a machine learning model on a test dataset using a given evaluation metric.
    The evaluation results are returned as a dictionary.

    Args:
        y_true (np.ndarray): A numpy array containing the true values.
        y_pred (np.ndarray): A numpy array containing the predicted values.
        memory (float): The memory usage of the model.
        r_time (float): The computation time of the model.
        metric (object): An evaluation metric object that has an `evaluate` method.
            This metric will be used to evaluate the model's performance on the test dataset.

    Returns:
        dict: A dictionary containing the evaluation results.

    Examples:
        >>> from sklearn.metrics import accuracy_score
        >>> import numpy as np
        >>> from spotRiver.evaluation.eval_bml import evaluate_model
        >>> y_true = np.array([0, 1, 0, 1])
        >>> y_pred = np.array([0, 1, 1, 1])
        >>> memory = 0.0
        >>> r_time = 0.0
        >>> metric = accuracy_score
        >>> evaluate_model(y_true, y_pred, memory, r_time, metric)
        {'Metric': 0.75, 'Memory (MB)': 0.0, 'CompTime (s)': 0.0}
    """
    if len(y_true) != len(y_pred):
        raise ValueError("y_true and y_pred must have the same size")
    if (len(y_true) == 0) or (len(y_pred) == 0):
        res_dict = {
            "Metric": None,
            "Memory (MB)": memory,
            "CompTime (s)": r_time,
        }
        return res_dict
    # if y_pred or y_true is bool convert to int
    if y_pred.dtype == bool:
        y_pred = y_pred.astype(int)
    if y_true.dtype == bool:
        y_true = y_true.astype(int)
    score = metric(y_true, y_pred)
    res_dict = {"Metric": score, "Memory (MB)": memory, "CompTime (s)": r_time}
    return res_dict

gen_sliding_window(df, horizon, include_remainder=True)

Generates sliding windows of a given size from a DataFrame.

Parameters:

Name Type Description Default
df DataFrame

The input DataFrame.

required
horizon int

The size of the sliding window.

required
include_remainder bool

Whether to include the remainder of the DataFrame if its length is not divisible by the horizon. Defaults to False.

True

Yields:

Type Description
DataFrame

A sliding window of the input DataFrame.

Examples:

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
>>> for window in gen_sliding_window(df, 2):
...     print(window)
   A  B
0  1  4
1  2  5
   A  B
2  3  6
Source code in spotRiver/evaluation/eval_bml.py
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
def gen_sliding_window(
    df: pd.DataFrame, horizon: int, include_remainder: bool = True
) -> Generator[pd.DataFrame, None, None]:
    """Generates sliding windows of a given size from a DataFrame.

    Args:
        df (pd.DataFrame): The input DataFrame.
        horizon (int): The size of the sliding window.
        include_remainder (bool):
            Whether to include the remainder of the DataFrame
            if its length is not divisible by the horizon. Defaults to False.

    Yields:
        (pd.DataFrame):
            A sliding window of the input DataFrame.

    Examples:
        >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
        >>> for window in gen_sliding_window(df, 2):
        ...     print(window)
           A  B
        0  1  4
        1  2  5
           A  B
        2  3  6
    """
    i = 0
    while True:
        subset = df[i * horizon : (i + 1) * horizon]
        if len(subset) == 0:
            break
        elif len(subset) < horizon:
            if include_remainder:
                yield subset
            break
        i += 1
        yield subset

plot_bml_oml_horizon_metrics(df_eval=None, df_labels=None, log_x=False, log_y=False, cumulative=True, grid=True, figsize=None, metric=None, filename=None, show=False, title='', **kwargs)

Plot evaluation metrics for machine learning models.

This function plots the evaluation metrics for different machine learning models on a given dataset. The function takes a list of pandas dataframes as input, each containing the evaluation metrics for one model. The function also takes an optional list of labels for each model and boolean flags to indicate whether to use logarithmic scales for the x-axis and y-axis.

Parameters:

Name Type Description Default
df_eval list[DataFrame]

A list of pandas dataframes containing the evaluation metrics for each model. Each dataframe should have an index column with the dataset name and three columns with the label names: e.g., “Metric”, “CompTime (s)” and “Memory (MB)”. If None, no plot is generated. Default is None.

None
df_labels list

A list of strings containing the labels for each model. The length of this list should match the length of df_eval. If None, numeric indices are used as labels. Default is None.

None
log_x bool

A flag indicating whether to use logarithmic scale for the x-axis. If True, log scale is used. If False, linear scale is used. Default is False.

False
log_y bool

A flag indicating whether to use logarithmic scale for the y-axis. If True, log scale is used. If False, linear scale is used. Default is False.

False
cumulative bool

A flag indicating whether to plot cumulative metrics. If True, cumulative metrics are plotted. If False, non-cumulative metrics are plotted. Default is True.

True
grid bool

A flag indicating whether to plot a grid. If True, grid is shown. Default is True.

True
figsize tuple

The size of the figure. Default is None.

None
metric object

An evaluation metric object that has an evaluate method. This metric will be used to evaluate the model’s performance on the test dataset.

None
filename str

The name of the file to save the plot to. If None, the plot is not saved. Default is None.

None
title str

The title of the plot. Default is an empty string.

''
**kwargs Any

Additional keyword arguments to be passed to the plot function.

{}

Returns:

Type Description
NoneType

This function does not return anything.

Examples:

>>> from sklearn.metrics import accuracy_score
>>> from spotRiver.evaluation.eval_bml import plot_bml_oml_horizon_metrics
>>> df_eval = pd.DataFrame({"Metric": [0.5, 0.75, 0.9], "CompTime (s)": [0.1, 0.2, 0.3], "Memory (MB)": [0.1, 0.2, 0.3]})
>>> df_labels = ["Model 1", "Model 2", "Model 3"]
>>> plot_bml_oml_horizon_metrics(df_eval, df_labels, metric=accuracy_score)
Source code in spotRiver/evaluation/eval_bml.py
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
def plot_bml_oml_horizon_metrics(
    df_eval: list[pd.DataFrame] = None,
    df_labels: list = None,
    log_x=False,
    log_y=False,
    cumulative=True,
    grid=True,
    figsize=None,
    metric=None,
    filename=None,
    show=False,
    title="",
    **kwargs,
) -> None:
    """Plot evaluation metrics for machine learning models.

    This function plots the evaluation metrics for different machine learning models
    on a given dataset. The function takes a list of pandas dataframes as input,
    each containing the evaluation metrics for one model. The function also takes
    an optional list of labels for each model and boolean flags to indicate whether
    to use logarithmic scales for the x-axis and y-axis.

    Args:
        df_eval (list[pd.DataFrame], optional):
            A list of pandas dataframes containing the evaluation metrics for each model.
            Each dataframe should have an index column with the dataset name and three
            columns with the label names: e.g., "Metric", "CompTime (s)" and "Memory (MB)".
            If None, no plot is generated. Default is None.
        df_labels (list, optional):
            A list of strings containing the labels for each model.
            The length of this list should match the length of df_eval.
            If None, numeric indices are used as labels. Default is None.
        log_x (bool, optional):
            A flag indicating whether to use logarithmic scale for the x-axis.
            If True, log scale is used. If False, linear scale is used. Default is False.
        log_y (bool, optional):
            A flag indicating whether to use logarithmic scale for the y-axis.
            If True, log scale is used. If False, linear scale is used. Default is False.
        cumulative (bool, optional):
            A flag indicating whether to plot cumulative metrics.
            If True, cumulative metrics are plotted. If False, non-cumulative metrics are plotted.
            Default is True.
        grid (bool, optional):
            A flag indicating whether to plot a grid.
            If True, grid is shown. Default is True.
        figsize (tuple, optional):
            The size of the figure. Default is None.
        metric (object):
            An evaluation metric object that has an `evaluate` method.
            This metric will be used to evaluate the model's performance on the test dataset.
        filename (str, optional):
            The name of the file to save the plot to. If None, the plot is not saved. Default is None.
        title (str, optional):
            The title of the plot. Default is an empty string.
        **kwargs (Any): Additional keyword arguments to be passed to the plot function.

    Returns:
        (NoneType): This function does not return anything.

    Examples:
        >>> from sklearn.metrics import accuracy_score
        >>> from spotRiver.evaluation.eval_bml import plot_bml_oml_horizon_metrics
        >>> df_eval = pd.DataFrame({"Metric": [0.5, 0.75, 0.9], "CompTime (s)": [0.1, 0.2, 0.3], "Memory (MB)": [0.1, 0.2, 0.3]})
        >>> df_labels = ["Model 1", "Model 2", "Model 3"]
        >>> plot_bml_oml_horizon_metrics(df_eval, df_labels, metric=accuracy_score)
    """
    if figsize is None:
        figsize = (10, 5)
    # Check if metric is None or null and raise ValueError if it is
    if metric is None:
        raise ValueError("The 'metric' parameter must not be None or null.")
    # Check if input dataframes are provided
    if df_eval is not None:
        df_list = copy.deepcopy(df_eval)
        # Convert single dataframe input to a list if needed
        if df_list.__class__ != list:
            df_list = [df_list]
        # Define metric names and titles
        metric_name = metric.__name__
        metrics = ["Metric", "CompTime (s)", "Memory (MB)"]
        titles = [metric_name, "Computation time (s)", "Memory (MB)"]
        # Create subplots with shared x-axis
        fig, axes = plt.subplots(3, figsize=figsize, constrained_layout=True, sharex=True)
        # Loop over each dataframe in input list
        for j, df in enumerate(df_list):
            if cumulative:
                # df.MAE = np.cumsum(df.MAE) / range(1, (1 + df.MAE.size))
                df["Metric"] = np.cumsum(df["Metric"]) / range(1, (1 + df["Metric"].size))
                df["CompTime (s)"] = np.cumsum(df["CompTime (s)"])  # / range(1, (1 + df["CompTime (s)"].size))
                # df["Memory (MB)"] = np.cumsum(df["Memory (MB)"]) / range(1, (1 + df["Memory (MB)"].size))
            # Loop over each metric
            for i in range(3):
                # Assign label based on input or default value
                if df_labels is None:
                    label = f"{j}"
                else:
                    label = df_labels[j]
                # Plot metric values against dataset names
                axes[i].plot(df.index.values.tolist(), df[metrics[i]].values.tolist(), label=label, **kwargs)
                # Set title and legend
                axes[i].set_title(titles[i])
                axes[i].legend(loc="upper right")
                axes[i].grid(grid)
                # Set logarithmic scales if specified
                if log_x:
                    axes[i].set_xscale("log")
                if log_y:
                    axes[i].set_yscale("log")
        if filename is not None:
            plt.savefig(filename)
    # add a title to the figure
    fig.suptitle(f"Metrics for {title}")
    if show:
        plt.show()

plot_bml_oml_horizon_predictions(df_true=None, df_labels=None, target_column='Actual', log_x=False, log_y=False, skip_first_n=0, grid=True, figsize=None, filename=None, **kwargs)

Plot actual vs predicted values for machine learning models.

This function plots the actual vs predicted values for different machine learning models on a given dataset. The function takes a list of pandas dataframes as input, each containing the actual and predicted values for one model. The function also takes an optional list of labels for each model and boolean flags to indicate whether to use logarithmic scales for the x-axis and y-axis.

Parameters:

Name Type Description Default
df_true list[DataFrame]

A list of pandas dataframes containing the actual and predicted values for each model. Each dataframe should have an index column with the dataset name and two columns with the label names: e.g., “Actual” and “Prediction”. If None, no plot is generated. Default is None.

None
df_labels list

A list of strings containing the labels for each model. The length of this list should match the length of df_true. If None, numeric indices are used as labels. Default is None.

None
target_column str

The name of the column containing the target variable. Default is “Actual”.

'Actual'
log_x bool

A flag indicating whether to use logarithmic scale for the x-axis. If True, log scale is used. If False, linear scale is used. Default is False.

False
log_y bool

A flag indicating whether to use logarithmic scale for the y-axis. If True, log scale is used. If False, linear scale is used. Default is False.

False
skip_first_n int

The number of rows to skip from the beginning of the dataframes. Default is 0.

0
grid bool

A flag indicating whether to plot a grid. If True, grid is shown. Default is True.

True
figsize tuple

The size of the figure. Default is None.

None
filename str

The name of the file to save the plot to. If None, the plot is not saved. Default is None.

None
**kwargs Any

Additional keyword arguments to be passed to the plot function.

{}

Returns:

Type Description
NoneType

This function does not return anything.

Examples:

>>> from sklearn.metrics import accuracy_score
>>> from spotRiver.evaluation.eval_bml import plot_bml_oml_horizon_predictions
>>> df_true = pd.DataFrame({"Actual": [0.5, 0.75, 0.9], "Prediction": [0.1, 0.2, 0.3]})
>>> df_labels = ["Model 1", "Model 2", "Model 3"]
>>> plot_bml_oml_horizon_predictions(df_true, df_labels, target_column="Actual")
Source code in spotRiver/evaluation/eval_bml.py
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
def plot_bml_oml_horizon_predictions(
    df_true: list[pd.DataFrame] = None,
    df_labels: list = None,
    target_column: str = "Actual",
    log_x=False,
    log_y=False,
    skip_first_n=0,
    grid=True,
    figsize: tuple = None,
    filename=None,
    **kwargs,
) -> None:
    """Plot actual vs predicted values for machine learning models.

    This function plots the actual vs predicted values for different machine learning models
    on a given dataset. The function takes a list of pandas dataframes as input,
    each containing the actual and predicted values for one model. The function also takes
    an optional list of labels for each model and boolean flags to indicate whether
    to use logarithmic scales for the x-axis and y-axis.

    Args:
        df_true (list[pd.DataFrame], optional):
            A list of pandas dataframes containing the actual and predicted values for each model.
            Each dataframe should have an index column with the dataset name and two columns with
            the label names: e.g., "Actual" and "Prediction".
            If None, no plot is generated. Default is None.
        df_labels (list, optional):
            A list of strings containing the labels for each model.
            The length of this list should match the length of df_true.
            If None, numeric indices are used as labels. Default is None.
        target_column (str, optional):
            The name of the column containing the target variable. Default is "Actual".
        log_x (bool, optional):
            A flag indicating whether to use logarithmic scale for the x-axis.
            If True, log scale is used. If False, linear scale is used. Default is False.
        log_y (bool, optional):
            A flag indicating whether to use logarithmic scale for the y-axis.
            If True, log scale is used. If False, linear scale is used. Default is False.
        skip_first_n (int, optional):
            The number of rows to skip from the beginning of the dataframes. Default is 0.
        grid (bool, optional):
            A flag indicating whether to plot a grid. If True, grid is shown. Default is True.
        figsize (tuple, optional):
            The size of the figure. Default is None.
        filename (str, optional):
            The name of the file to save the plot to. If None, the plot is not saved. Default is None.
        **kwargs (Any): Additional keyword arguments to be passed to the plot function.

    Returns:
        (NoneType): This function does not return anything.

    Examples:
        >>> from sklearn.metrics import accuracy_score
        >>> from spotRiver.evaluation.eval_bml import plot_bml_oml_horizon_predictions
        >>> df_true = pd.DataFrame({"Actual": [0.5, 0.75, 0.9], "Prediction": [0.1, 0.2, 0.3]})
        >>> df_labels = ["Model 1", "Model 2", "Model 3"]
        >>> plot_bml_oml_horizon_predictions(df_true, df_labels, target_column="Actual")

    """
    if figsize is None:
        figsize = (10, 5)
    if df_true is not None:
        df_plot = copy.deepcopy(df_true)
        if df_plot.__class__ != list:
            df_plot = [df_plot]
        plt.figure(figsize=figsize)
        for j, df in enumerate(df_plot):
            if df_labels is None:
                label = f"{j}"
            else:
                label = df_labels[j]
            df.loc[: skip_first_n - 1, "Prediction"] = np.nan
            plt.plot(df.index, df["Prediction"], label=label, **kwargs)
        plt.plot(df_plot[0].index, df_plot[0][target_column], label="Actual", color="black", **kwargs)
        plt.title("Actual vs Prediction")
        if log_x:
            plt.xscale("log")
        if log_y:
            plt.yscale("log")
        plt.grid(grid)
        plt.legend()
        if filename is not None:
            plt.savefig(filename)
    plt.show()