Skip to content

spot

Spot

Spot base class to handle the following tasks in a uniform manner:

  • Getting and setting parameters. This is done via the Spot initialization.
  • Running surrogate based hyperparameter optimization. After the class is initialized, hyperparameter tuning runs can be performed via the run method.
  • Displaying information. The plot method can be used for visualizing results. The print methods summarizes information about the tuning run.

The Spot class is built in a modular manner. It combines the following components:

1. Fun (objective function)
2. Design (experimental design)
3. Optimizer to be used on the surrogate model
4. Surrogate (model)

For each of the components different implementations can be selected and combined. Internal components are selected as default. These can be replaced by components from other packages, e.g., scikit-learn or scikit-optimize.

Parameters:

Name Type Description Default
fun Callable

objective function

None
fun_control Dict[str, Union[int, float]]

objective function information stored as a dictionary. Default value is fun_control_init().

fun_control_init()
design object

experimental design. If None, spotPython’s spacefilling is used. Default value is None.

None
design_control Dict[str, Union[int, float]]

experimental design information stored as a dictionary. Default value is design_control_init().

design_control_init()
optimizer object

optimizer on the surrogate. If None, scipy.optimize’s differential_evolution is used. Default value is None.

None
optimizer_control Dict[str, Union[int, float]]

information about the optimizer stored as a dictionary. Default value is optimizer_control_init().

optimizer_control_init()
surrogate object

surrogate model. If None, spotPython’s kriging is used. Default value is None.

None
surrogate_control Dict[str, Union[int, float]]

surrogate model information stored as a dictionary. Default value is surrogate_control_init().

surrogate_control_init()

Returns:

Type Description
NoneType

None

Note

Description in the source code refers to [bart21i]: Bartz-Beielstein, T., and Zaefferer, M. Hyperparameter tuning approaches. In Hyperparameter Tuning for Machine and Deep Learning with R - A Practical Guide, E. Bartz, T. Bartz-Beielstein, M. Zaefferer, and O. Mersmann, Eds. Springer, 2022, ch. 4, pp. 67–114.

Examples:

>>> import numpy as np
    from math import inf
    from spotPython.spot import spot
    from spotPython.utils.init import (
        fun_control_init,
        design_control_init,
        surrogate_control_init,
        optimizer_control_init)
    def objective_function(X, fun_control=None):
        if not isinstance(X, np.ndarray):
            X = np.array(X)
        if X.shape[1] != 2:
            raise Exception
        x0 = X[:, 0]
        x1 = X[:, 1]
        y = x0**2 + 10*x1**2
        return y
    fun_control = fun_control_init(
                lower = np.array([0, 0]),
                upper = np.array([10, 10]),
                fun_evals=8,
                fun_repeats=1,
                max_time=inf,
                noise=False,
                tolerance_x=0,
                ocba_delta=0,
                var_type=["num", "num"],
                infill_criterion="ei",
                n_points=1,
                seed=123,
                log_level=20,
                show_models=False,
                show_progress=True)
    design_control = design_control_init(
                init_size=5,
                repeats=1)
    surrogate_control = surrogate_control_init(
                model_optimizer=differential_evolution,
                model_fun_evals=10000,
                min_theta=-3,
                max_theta=3,
                n_theta=2,
                theta_init_zero=True,
                n_p=1,
                optim_p=False,
                var_type=["num", "num"],
                metric_factorial="canberra",
                seed=124)
    optimizer_control = optimizer_control_init(
                max_iter=1000,
                seed=125)
    spot = spot.Spot(fun=objective_function,
                fun_control=fun_control,
                design_control=design_control,
                surrogate_control=surrogate_control,
                optimizer_control=optimizer_control)
    spot.run()
    spot.plot_progress()
    spot.plot_contour(i=0, j=1)
    spot.plot_importance()
Source code in spotPython/spot/spot.py
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
class Spot:
    """
    Spot base class to handle the following tasks in a uniform manner:

    * Getting and setting parameters. This is done via the `Spot` initialization.
    * Running surrogate based hyperparameter optimization. After the class is initialized, hyperparameter tuning
    runs can be performed via the `run` method.
    * Displaying information. The `plot` method can be used for visualizing results. The `print` methods summarizes
    information about the tuning run.

    The `Spot` class is built in a modular manner. It combines the following components:

        1. Fun (objective function)
        2. Design (experimental design)
        3. Optimizer to be used on the surrogate model
        4. Surrogate (model)

    For each of the components different implementations can be selected and combined.
    Internal components are selected as default.
    These can be replaced by components from other packages, e.g., scikit-learn or scikit-optimize.

    Args:
        fun (Callable):
            objective function
        fun_control (Dict[str, Union[int, float]]):
            objective function information stored as a dictionary.
            Default value is `fun_control_init()`.
        design (object):
            experimental design. If `None`, spotPython's `spacefilling` is used.
            Default value is `None`.
        design_control (Dict[str, Union[int, float]]):
            experimental design information stored as a dictionary.
            Default value is `design_control_init()`.
        optimizer (object):
            optimizer on the surrogate. If `None`, `scipy.optimize`'s `differential_evolution` is used.
            Default value is `None`.
        optimizer_control (Dict[str, Union[int, float]]):
            information about the optimizer stored as a dictionary.
            Default value is `optimizer_control_init()`.
        surrogate (object):
            surrogate model. If `None`, spotPython's `kriging` is used. Default value is `None`.
        surrogate_control (Dict[str, Union[int, float]]):
            surrogate model information stored as a dictionary.
            Default value is `surrogate_control_init()`.

    Returns:
        (NoneType): None

    Note:
        Description in the source code refers to [bart21i]:
        Bartz-Beielstein, T., and Zaefferer, M. Hyperparameter tuning approaches.
        In Hyperparameter Tuning for Machine and Deep Learning with R - A Practical Guide,
        E. Bartz, T. Bartz-Beielstein, M. Zaefferer, and O. Mersmann, Eds. Springer, 2022, ch. 4, pp. 67–114.

    Examples:
        >>> import numpy as np
            from math import inf
            from spotPython.spot import spot
            from spotPython.utils.init import (
                fun_control_init,
                design_control_init,
                surrogate_control_init,
                optimizer_control_init)
            def objective_function(X, fun_control=None):
                if not isinstance(X, np.ndarray):
                    X = np.array(X)
                if X.shape[1] != 2:
                    raise Exception
                x0 = X[:, 0]
                x1 = X[:, 1]
                y = x0**2 + 10*x1**2
                return y
            fun_control = fun_control_init(
                        lower = np.array([0, 0]),
                        upper = np.array([10, 10]),
                        fun_evals=8,
                        fun_repeats=1,
                        max_time=inf,
                        noise=False,
                        tolerance_x=0,
                        ocba_delta=0,
                        var_type=["num", "num"],
                        infill_criterion="ei",
                        n_points=1,
                        seed=123,
                        log_level=20,
                        show_models=False,
                        show_progress=True)
            design_control = design_control_init(
                        init_size=5,
                        repeats=1)
            surrogate_control = surrogate_control_init(
                        model_optimizer=differential_evolution,
                        model_fun_evals=10000,
                        min_theta=-3,
                        max_theta=3,
                        n_theta=2,
                        theta_init_zero=True,
                        n_p=1,
                        optim_p=False,
                        var_type=["num", "num"],
                        metric_factorial="canberra",
                        seed=124)
            optimizer_control = optimizer_control_init(
                        max_iter=1000,
                        seed=125)
            spot = spot.Spot(fun=objective_function,
                        fun_control=fun_control,
                        design_control=design_control,
                        surrogate_control=surrogate_control,
                        optimizer_control=optimizer_control)
            spot.run()
            spot.plot_progress()
            spot.plot_contour(i=0, j=1)
            spot.plot_importance()
    """

    def __str__(self):
        return self.__class__.__name__

    def __init__(
        self,
        design: object = None,
        design_control: dict = design_control_init(),
        fun: Callable = None,
        fun_control: dict = fun_control_init(),
        optimizer: object = None,
        optimizer_control: dict = optimizer_control_init(),
        surrogate: object = None,
        surrogate_control: dict = surrogate_control_init(),
    ):
        self.fun_control = fun_control
        self.design_control = design_control
        self.optimizer_control = optimizer_control
        self.surrogate_control = surrogate_control

        # small value:
        self.eps = sqrt(spacing(1))

        self.fun = fun
        if self.fun is None:
            raise Exception("No objective function specified.")
        if not callable(self.fun):
            raise Exception("Objective function is not callable.")

        # 1. fun_control updates:
        # -----------------------
        # Random number generator:
        self.rng = default_rng(self.fun_control["seed"])

        # 2. lower attribute updates:
        # -----------------------
        # if lower is in the fun_control dictionary, use the value of the key "lower" as the lower bound
        if get_control_key_value(control_dict=self.fun_control, key="lower") is not None:
            self.lower = get_control_key_value(control_dict=self.fun_control, key="lower")
        # Number of dimensions is based on lower
        self.k = self.lower.size

        # 3. upper attribute updates:
        # -----------------------
        # if upper is in fun_control dictionary, use the value of the key "upper" as the upper bound
        if get_control_key_value(control_dict=self.fun_control, key="upper") is not None:
            self.upper = get_control_key_value(control_dict=self.fun_control, key="upper")

        # 4. var_type attribute updates:
        # -----------------------
        # self.set_self_attribute("var_type", var_type, self.fun_control)
        self.var_type = self.fun_control["var_type"]
        # Force numeric type as default in every dim:
        # assume all variable types are "num" if "num" is
        # specified less than k times
        if len(self.var_type) < self.k:
            self.var_type = self.var_type * self.k
            logger.warning("All variable types forced to 'num'.")

        # 5. var_name attribute updates:
        # -----------------------
        # self.set_self_attribute("var_name", var_name, self.fun_control)
        self.var_name = self.fun_control["var_name"]
        # use x0, x1, ... as default variable names:
        if self.var_name is None:
            self.var_name = ["x" + str(i) for i in range(len(self.lower))]

        # Reduce dim based on lower == upper logic:
        # modifies lower, upper, var_type, and var_name
        self.to_red_dim()

        # 6. Additional self attributes updates:
        # -----------------------
        self.fun_evals = self.fun_control["fun_evals"]
        self.fun_repeats = self.fun_control["fun_repeats"]
        self.max_time = self.fun_control["max_time"]
        self.noise = self.fun_control["noise"]
        self.tolerance_x = self.fun_control["tolerance_x"]
        self.ocba_delta = self.fun_control["ocba_delta"]
        self.log_level = self.fun_control["log_level"]
        self.show_models = self.fun_control["show_models"]
        self.show_progress = self.fun_control["show_progress"]
        self.infill_criterion = self.fun_control["infill_criterion"]
        self.n_points = self.fun_control["n_points"]
        self.max_surrogate_points = self.fun_control["max_surrogate_points"]
        self.progress_file = self.fun_control["progress_file"]

        # if the key "spot_writer" is not in the dictionary fun_control,
        # set self.spot_writer to None else to the value of the key "spot_writer"
        self.spot_writer = self.fun_control.get("spot_writer", None)

        # Bounds are internal, because they are functions of self.lower and self.upper
        # and used by the optimizer:
        de_bounds = []
        for j in range(self.lower.size):
            de_bounds.append([self.lower[j], self.upper[j]])
        self.de_bounds = de_bounds

        # Design related information:
        self.design = design
        if design is None:
            self.design = spacefilling(k=self.lower.size, seed=self.fun_control["seed"])
        # self.design_control = {"init_size": 10, "repeats": 1}
        # self.design_control.update(design_control)

        # Optimizer related information:
        self.optimizer = optimizer
        # self.optimizer_control = {"max_iter": 1000, "seed": 125}
        # self.optimizer_control.update(optimizer_control)
        if self.optimizer is None:
            self.optimizer = optimize.differential_evolution

        # Surrogate related information:
        self.surrogate = surrogate
        self.surrogate_control.update({"var_type": self.var_type})
        # Surrogate control updates:
        # The default value for `noise` from the surrogate_control dictionary
        # based on surrogate_control.init() is None. This value is updated
        # to the value of the key "noise" from the fun_control dictionary.
        # If the value is set (i.e., not None), it is not updated.
        if self.surrogate_control["noise"] is None:
            self.surrogate_control.update({"noise": self.fun_control.noise})
        if self.surrogate_control["model_fun_evals"] is None:
            self.surrogate_control.update({"model_fun_evals": self.optimizer_control["max_iter"]})
        # self.optimizer is not None here. If 1) the key "model_optimizer"
        # is still None or 2) a user specified optimizer is provided, update the value of
        # the key "model_optimizer" to the value of self.optimizer.
        if self.surrogate_control["model_optimizer"] is None or optimizer is not None:
            self.surrogate_control.update({"model_optimizer": self.optimizer})

        # If self.surrogate_control["n_theta"] > 1, use k theta values:
        if self.surrogate_control["n_theta"] > 1:
            surrogate_control.update({"n_theta": self.k})
        else:
            surrogate_control.update({"n_theta": 1})

        # If no surrogate model is specified, use the internal
        # spotPython kriging surrogate:
        if self.surrogate is None:
            # Call kriging with surrogate_control parameters:
            self.surrogate = Kriging(
                name="kriging",
                noise=self.surrogate_control["noise"],
                model_optimizer=self.surrogate_control["model_optimizer"],
                model_fun_evals=self.surrogate_control["model_fun_evals"],
                seed=self.surrogate_control["seed"],
                log_level=self.log_level,
                min_theta=self.surrogate_control["min_theta"],
                max_theta=self.surrogate_control["max_theta"],
                metric_factorial=self.surrogate_control["metric_factorial"],
                n_theta=self.surrogate_control["n_theta"],
                theta_init_zero=self.surrogate_control["theta_init_zero"],
                p_val=self.surrogate_control["p_val"],
                n_p=self.surrogate_control["n_p"],
                optim_p=self.surrogate_control["optim_p"],
                min_Lambda=self.surrogate_control["min_Lambda"],
                max_Lambda=self.surrogate_control["max_Lambda"],
                var_type=self.surrogate_control["var_type"],
                spot_writer=self.spot_writer,
                counter=self.design_control["init_size"] * self.design_control["repeats"] - 1,
            )

        # Internal attributes:
        self.X = None
        self.y = None
        # Logging information:
        self.counter = 0
        self.min_y = None
        self.min_X = None
        self.min_mean_X = None
        self.min_mean_y = None
        self.mean_X = None
        self.mean_y = None
        self.var_y = None

        logger.setLevel(self.log_level)
        logger.info(f"Starting the logger at level {self.log_level} for module {__name__}:")
        logger.debug("In Spot() init(): fun_control: %s", self.fun_control)
        logger.debug("In Spot() init(): design_control: %s", self.design_control)
        logger.debug("In Spot() init(): optimizer_control: %s", self.optimizer_control)
        logger.debug("In Spot() init(): surrogate_control: %s", self.surrogate_control)
        logger.debug("In Spot() init(): self.get_spot_attributes_as_df(): %s", self.get_spot_attributes_as_df())

    def set_self_attribute(self, attribute, value, dict):
        """
        This function sets the attribute of the 'self' object to the provided value.
        If the key exists in the provided dictionary, it updates the attribute with the value from the dictionary.

        Args:
            self (object): the object whose attribute is to be set
            attribute (str): the attribute to set
            value (Any): the value to set the attribute to
            dict (dict): the dictionary to check for the key
        """
        setattr(self, attribute, value)
        if get_control_key_value(control_dict=dict, key=attribute) is not None:
            setattr(self, attribute, get_control_key_value(control_dict=dict, key=attribute))

    def get_spot_attributes_as_df(self) -> pd.DataFrame:
        """Get all attributes of the spot object as a pandas dataframe.

        Returns:
            (pandas.DataFrame): dataframe with all attributes of the spot object.

        Examples:
            >>> import numpy as np
                from math import inf
                from spotPython.fun.objectivefunctions import analytical
                from spotPython.spot import spot
                                from spotPython.utils.init import (
                    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                    )
                # number of initial points:
                ni = 7
                # number of points
                n = 10
                fun = analytical().fun_sphere
                fun_control = fun_control_init(
                    lower = np.array([-1]),
                    upper = np.array([1])
                    fun_evals=n)
                design_control=design_control_init(init_size=ni)
                spot_1 = spot.Spot(fun=fun,
                            fun_control=fun_control,
                            design_control=design_control,)
                spot_1.run()
                df = spot_1.get_spot_attributes_as_df()
                df
                    Attribute Name                                    Attribute Value
                0                   X  [[-0.3378148180708981], [0.698908280342222], [...
                1           all_lower                                               [-1]
                2           all_upper                                                [1]
                3        all_var_name                                               [x0]
                4        all_var_type                                              [num]
                5             counter                                                 10
                6           de_bounds                                          [[-1, 1]]
                7              design  <spotPython.design.spacefilling.spacefilling o...
                8      design_control                     {'init_size': 7, 'repeats': 1}
                9                 eps                                                0.0
                10        fun_control                         {'sigma': 0, 'seed': None}
                11          fun_evals                                                 10
                12        fun_repeats                                                  1
                13              ident                                            [False]
                14   infill_criterion                                                  y
                15                  k                                                  1
                16          log_level                                                 50
                17              lower                                               [-1]
                18           max_time                                                inf
                19             mean_X                                               None
                20             mean_y                                               None
                21              min_X                           [1.5392206722432657e-05]
                22         min_mean_X                                               None
                23         min_mean_y                                               None
                24              min_y                                                0.0
                25           n_points                                                  1
                26              noise                                              False
                27         ocba_delta                                                  0
                28  optimizer_control                    {'max_iter': 1000, 'seed': 125}
                29            red_dim                                              False
                30                rng                                   Generator(PCG64)
                31               seed                                                123
                32        show_models                                              False
                33      show_progress                                               True
                34        spot_writer                                               None
                35          surrogate  <spotPython.build.kriging.Kriging object at 0x...
                36  surrogate_control  {'noise': False, 'model_optimizer': <function ...
                37        tolerance_x                                                  0
                38              upper                                                [1]
                39           var_name                                               [x0]
                40           var_type                                              [num]
                41              var_y                                               None
                42                  y  [0.11411885130827397, 0.48847278433092195, 0.0...

        """

        attributes = [attr for attr in dir(self) if not callable(getattr(self, attr)) and not attr.startswith("__")]
        values = [getattr(self, attr) for attr in attributes]
        df = pd.DataFrame({"Attribute Name": attributes, "Attribute Value": values})
        return df

    def to_red_dim(self) -> None:
        """
        Reduce dimension if lower == upper.
        This is done by removing the corresponding entries from
        lower, upper, var_type, and var_name.
        k is modified accordingly.

        Args:
            self (object): Spot object

        Returns:
            (NoneType): None

        Attributes:
            self.lower (numpy.ndarray): lower bound
            self.upper (numpy.ndarray): upper bound
            self.var_type (List[str]): list of variable types

        Examples:
            >>> import numpy as np
                from spotPython.fun.objectivefunctions import analytical
                from spotPython.spot import spot
                                from spotPython.utils.init import (
                    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                    )
                # number of initial points:
                ni = 3
                # number of points
                n = 10
                fun = analytical().fun_sphere
                fun_control = fun_control_init(
                    lower = np.array([-1, -1]),
                    upper = np.array([1, 1]),
                    fun_evals = n)
                design_control=design_control_init(init_size=ni)
                spot_1 = spot.Spot(fun=fun,
                            fun_control=fun_control,
                            design_control=design_control,)
                spot_1.run()
                assert spot_1.lower.size == 2
                assert spot_1.upper.size == 2
                assert len(spot_1.var_type) == 2
                assert spot_1.red_dim == False
                spot_1.lower = np.array([-1, -1])
                spot_1.upper = np.array([-1, -1])
                spot_1.to_red_dim()
                assert spot_1.lower.size == 0
                assert spot_1.upper.size == 0
                assert len(spot_1.var_type) == 0
                assert spot_1.red_dim == True

        """
        # Backup of the original values:
        self.all_lower = self.lower
        self.all_upper = self.upper
        # Select only lower != upper:
        self.ident = (self.upper - self.lower) == 0
        # Determine if dimension is reduced:
        self.red_dim = self.ident.any()
        # Modifications:
        # Modify lower and upper:
        self.lower = self.lower[~self.ident]
        self.upper = self.upper[~self.ident]
        # Modify k (dim):
        self.k = self.lower.size
        # Modify var_type:
        if self.var_type is not None:
            self.all_var_type = self.var_type
            self.var_type = [x for x, y in zip(self.all_var_type, self.ident) if not y]
        # Modify var_name:
        if self.var_name is not None:
            self.all_var_name = self.var_name
            self.var_name = [x for x, y in zip(self.all_var_name, self.ident) if not y]

    def to_all_dim(self, X0) -> np.array:
        n = X0.shape[0]
        k = len(self.ident)
        X = np.zeros((n, k))
        j = 0
        for i in range(k):
            if self.ident[i]:
                X[:, i] = self.all_lower[i]
                j += 1
            else:
                X[:, i] = X0[:, i - j]
        return X

    def to_all_dim_if_needed(self, X) -> np.array:
        if self.red_dim:
            return self.to_all_dim(X)
        else:
            return X

    def get_new_X0(self) -> np.array:
        """
        Get new design points.
        Calls `suggest_new_X()` and repairs the new design points, e.g.,
        by `repair_non_numeric()` and `selectNew()`.

        Args:
            self (object): Spot object

        Returns:
            (numpy.ndarray): new design points

        Notes:
            * self.design (object): an experimental design is used to generate new design points
            if no new design points are found, a new experimental design is generated.

        Examples:
            >>> import numpy as np
                from spotPython.fun.objectivefunctions import analytical
                               from spotPython.utils.init import (
                    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                    )
                from spotPython.spot import spot
                from spotPython.utils.init import fun_control_init
                # number of initial points:
                ni = 3
                X_start = np.array([[0, 1], [1, 0], [1, 1], [1, 1]])
                fun = analytical().fun_sphere
                fun_control = fun_control_init(
                            n_points=10,
                            ocba_delta=0,
                            lower = np.array([-1, -1]),
                            upper = np.array([1, 1])
                )
                design_control=design_control_init(init_size=ni)
                S = spot.Spot(fun=fun,
                                fun_control=fun_control
                                design_control=design_control,
                )
                S.initialize_design(X_start=X_start)
                S.update_stats()
                S.fit_surrogate()
                X_ocba = None
                X0 = S.get_new_X0()
                assert X0.shape[0] == S.n_points
                assert X0.shape[1] == S.lower.size
                # assert new points are in the interval [lower, upper]
                assert np.all(X0 >= S.lower)
                assert np.all(X0 <= S.upper)
                # print using 20 digits precision
                np.set_printoptions(precision=20)
                print(f"X0: {X0}")

        """
        # Try to generate self.fun_repeats new X0 points:
        X0 = self.suggest_new_X()
        X0 = repair_non_numeric(X0, self.var_type)
        # (S-16) Duplicate Handling:
        # Condition: select only X= that have min distance
        # to existing solutions
        X0, X0_ind = selectNew(A=X0, X=self.X, tolerance=self.tolerance_x)
        if X0.shape[0] > 0:
            # 1. There are X0 that fullfil the condition.
            # Note: The number of new X0 can be smaller than self.n_points!
            logger.debug("XO values are new: %s %s", X0_ind, X0)
            return repeat(X0, self.fun_repeats, axis=0)
            return X0
        # 2. No X0 found. Then generate self.n_points new solutions:
        else:
            self.design = spacefilling(k=self.k, seed=self.fun_control["seed"] + self.counter)
            X0 = self.generate_design(
                size=self.n_points, repeats=self.design_control["repeats"], lower=self.lower, upper=self.upper
            )
            X0 = repair_non_numeric(X0, self.var_type)
            logger.warning("No new XO found on surrogate. Generate new solution %s", X0)
            return X0

    def de_serialize_dicts(self) -> tuple:
        """
        Deserialize the spot object and return the dictionaries.

        Args:
            self (object):
                Spot object

        Returns:
            (tuple):
                tuple containing dictionaries of spot object:
                fun_control (dict): function control dictionary,
                design_control (dict): design control dictionary,
                optimizer_control (dict): optimizer control dictionary,
                spot_tuner_control (dict): spot tuner control dictionary, and
                surrogate_control (dict): surrogate control dictionary
        """
        spot_tuner = copy.deepcopy(self)
        spot_tuner_control = vars(spot_tuner)

        fun_control = copy.deepcopy(spot_tuner_control["fun_control"])
        design_control = copy.deepcopy(spot_tuner_control["design_control"])
        optimizer_control = copy.deepcopy(spot_tuner_control["optimizer_control"])
        surrogate_control = copy.deepcopy(spot_tuner_control["surrogate_control"])

        # remove keys from the dictionaries:
        spot_tuner_control.pop("fun_control", None)
        spot_tuner_control.pop("design_control", None)
        spot_tuner_control.pop("optimizer_control", None)
        spot_tuner_control.pop("surrogate_control", None)
        spot_tuner_control.pop("spot_writer", None)
        spot_tuner_control.pop("design", None)
        spot_tuner_control.pop("fun", None)
        spot_tuner_control.pop("optimizer", None)
        spot_tuner_control.pop("rng", None)
        spot_tuner_control.pop("surrogate", None)

        fun_control.pop("core_model", None)
        fun_control.pop("metric_river", None)
        fun_control.pop("metric_sklearn", None)
        fun_control.pop("metric_torch", None)
        fun_control.pop("prep_model", None)
        fun_control.pop("spot_writer", None)
        fun_control.pop("test", None)
        fun_control.pop("train", None)

        surrogate_control.pop("model_optimizer", None)
        surrogate_control.pop("surrogate", None)

        return (fun_control, design_control, optimizer_control, spot_tuner_control, surrogate_control)

    def write_db_dict(self) -> None:
        """Writes a dictionary with the experiment parameters to the json file spotPython_db.json.

        Args:
            self (object): Spot object

        Returns:
            (NoneType): None

        """
        # get the time in seconds from 1.1.1970 and convert the time to a string
        t_str = str(time.time())
        ident = str(self.fun_control["PREFIX"]) + "_" + t_str

        (
            fun_control,
            design_control,
            optimizer_control,
            spot_tuner_control,
            surrogate_control,
        ) = self.de_serialize_dicts()
        print("\n**********************")
        print("The following dictionaries are written to the json file spotPython_db.json:")
        print("fun_control:")
        pprint.pprint(fun_control)
        print("design_control:")
        pprint.pprint(design_control)
        print("optimizer_control:")
        pprint.pprint(optimizer_control)
        print("spot_tuner_control:")
        pprint.pprint(spot_tuner_control)
        print("surrogate_control:")
        pprint.pprint(surrogate_control)
        #
        # Generate a description of the results:
        # if spot_tuner_control['min_y'] exists:
        try:
            result = f"""
                      Results for {ident}: Finally, the best value is {spot_tuner_control['min_y']}
                      at {spot_tuner_control['min_X']}."""
            #
            db_dict = {
                "data": {
                    "id": str(ident),
                    "result": result,
                    "fun_control": fun_control,
                    "design_control": design_control,
                    "surrogate_control": surrogate_control,
                    "optimizer_control": optimizer_control,
                    "spot_tuner_control": spot_tuner_control,
                }
            }
            # Check if the directory "db_dicts" exists.
            if not os.path.exists("db_dicts"):
                try:
                    os.makedirs("db_dicts")
                except OSError as e:
                    raise Exception(f"Error creating directory: {e}")

            if os.path.exists("db_dicts"):
                try:
                    # Open the file in append mode to add each new dict as a new line
                    with open("db_dicts/" + self.fun_control["db_dict_name"], "a") as f:
                        # Using json.dumps to convert the dict to a JSON formatted string
                        # We then write this string to the file followed by a newline character
                        # This ensures that each dict is on its own line, conforming to the JSON Lines format
                        f.write(json.dumps(db_dict, cls=NumpyEncoder) + "\n")
                except OSError as e:
                    raise Exception(f"Error writing to file: {e}")
        except KeyError:
            print("No results to write.")

    def run(self, X_start=None) -> Spot:
        self.initialize_design(X_start)
        # New: self.update_stats() moved here:
        # changed in 0.5.9:
        self.update_stats()
        # (S-4): Imputation:
        # Not implemented yet.
        # (S-11) Surrogate Fit:
        self.fit_surrogate()
        # (S-5) Calling the spotLoop Function
        # and
        # (S-9) Termination Criteria, Conditions:
        timeout_start = time.time()
        while self.should_continue(timeout_start):
            self.update_design()
            # (S-10): Subset Selection for the Surrogate:
            # Not implemented yet.
            # Update stats
            self.update_stats()
            # Update writer:
            self.update_writer()
            # (S-11) Surrogate Fit:
            self.fit_surrogate()
            # progress bar:
            self.show_progress_if_needed(timeout_start)
        if self.spot_writer is not None:
            writer = self.spot_writer
            writer.close()
        pprint.pprint(self.fun_control)
        if self.fun_control["db_dict_name"] is not None:
            self.write_db_dict()
        self.save_experiment()
        return self

    def initialize_design(self, X_start=None) -> None:
        """
        Initialize design. Generate and evaluate initial design.
        If `X_start` is not `None`, append it to the initial design.
        Therefore, the design size is `init_size` + `X_start.shape[0]`.

        Args:
            self (object): Spot object
            X_start (numpy.ndarray, optional): initial design. Defaults to None.

        Returns:
            (NoneType): None

        Attributes:
            self.X (numpy.ndarray): initial design
            self.y (numpy.ndarray): initial design values

        Note:
            * If `X_start` is has the wrong shape, it is ignored.

        Examples:
            >>> import numpy as np
                from spotPython.fun.objectivefunctions import analytical
                from spotPython.spot import spot
                from spotPython.utils.init import (
                    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                    )
                # number of initial points:
                ni = 7
                # start point X_0
                X_start = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
                fun = analytical().fun_sphere
                fun_control = fun_control_init(
                    lower = np.array([-1, -1]),
                    upper = np.array([1, 1]))
                design_control=design_control_init(init_size=ni)
                S = spot.Spot(fun=fun,
                            fun_control=fun_control,
                            design_control=design_control,)
                S.initialize_design(X_start=X_start)
                print(f"S.X: {S.X}")
                print(f"S.y: {S.y}")
        """
        if self.design_control["init_size"] > 0:
            X0 = self.generate_design(
                size=self.design_control["init_size"],
                repeats=self.design_control["repeats"],
                lower=self.lower,
                upper=self.upper,
            )
        if X_start is not None:
            if not isinstance(X_start, np.ndarray):
                X_start = np.array(X_start)
            X_start = np.atleast_2d(X_start)
            try:
                if self.design_control["init_size"] > 0:
                    X0 = append(X_start, X0, axis=0)
                else:
                    X0 = X_start
            except ValueError:
                logger.warning("X_start has wrong shape. Ignoring it.")
        if X0.shape[0] == 0:
            raise Exception("X0 has zero rows. Check design_control['init_size'] or X_start.")
        X0 = repair_non_numeric(X0, self.var_type)
        self.X = X0
        # (S-3): Eval initial design:
        X_all = self.to_all_dim_if_needed(X0)
        logger.debug("In Spot() initialize_design(), before calling self.fun: X_all: %s", X_all)
        logger.debug("In Spot() initialize_design(), before calling self.fun: fun_control: %s", self.fun_control)
        self.y = self.fun(X=X_all, fun_control=self.fun_control)
        logger.debug("In Spot() initialize_design(), after calling self.fun: self.y: %s", self.y)
        # TODO: Error if only nan values are returned
        logger.debug("New y value: %s", self.y)
        #
        self.counter = self.y.size
        if self.spot_writer is not None:
            writer = self.spot_writer
            # range goes to init_size -1 because the last value is added by update_stats(),
            # which always adds the last value.
            # Changed in 0.5.9:
            for j in range(len(self.y)):
                X_j = self.X[j].copy()
                y_j = self.y[j].copy()
                config = {self.var_name[i]: X_j[i] for i in range(self.k)}
                writer.add_hparams(config, {"spot_y": y_j})
                writer.flush()
        #
        self.X, self.y = remove_nan(self.X, self.y)
        logger.debug("In Spot() initialize_design(), final X val, after remove nan: self.X: %s", self.X)
        logger.debug("In Spot() initialize_design(), final y val, after remove nan: self.y: %s", self.y)

    def should_continue(self, timeout_start) -> bool:
        return (self.counter < self.fun_evals) and (time.time() < timeout_start + self.max_time * 60)

    def update_design(self) -> None:
        """
        Update design. Generate and evaluate new design points.
        It is basically a call to the method `get_new_X0()`.
        If `noise` is `True`, additionally the following steps
        (from `get_X_ocba()`) are performed:
        1. Compute OCBA points.
        2. Evaluate OCBA points.
        3. Append OCBA points to the new design points.

        Args:
            self (object): Spot object

        Returns:
            (NoneType): None

        Attributes:
            self.X (numpy.ndarray): updated design
            self.y (numpy.ndarray): updated design values

        Examples:
            >>> # 1. Without OCBA points:
            >>> import numpy as np
                from spotPython.fun.objectivefunctions import analytical
                from spotPython.utils.init import (
                    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                    )
                from spotPython.spot import spot
                # number of initial points:
                ni = 0
                X_start = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]])
                fun = analytical().fun_sphere
                fun_control = fun_control_init(
                    lower = np.array([-1, -1]),
                    upper = np.array([1, 1])
                    )
                design_control=design_control_init(init_size=ni)
                S = spot.Spot(fun=fun,
                            fun_control=fun_control,
                            design_control=design_control,)
                S.initialize_design(X_start=X_start)
                print(f"S.X: {S.X}")
                print(f"S.y: {S.y}")
                X_shape_before = S.X.shape
                print(f"X_shape_before: {X_shape_before}")
                print(f"y_size_before: {S.y.size}")
                y_size_before = S.y.size
                S.update_stats()
                S.fit_surrogate()
                S.update_design()
                print(f"S.X: {S.X}")
                print(f"S.y: {S.y}")
                print(f"S.n_points: {S.n_points}")
                print(f"X_shape_after: {S.X.shape}")
                print(f"y_size_after: {S.y.size}")
            >>> #
            >>> # 2. Using the OCBA points:
            >>> import numpy as np
                from spotPython.fun.objectivefunctions import analytical
                from spotPython.spot import spot
                from spotPython.utils.init import fun_control_init
                # number of initial points:
                ni = 3
                X_start = np.array([[0, 1], [1, 0], [1, 1], [1, 1]])
                fun = analytical().fun_sphere
                fun_control = fun_control_init(
                        sigma=0.02,
                        lower = np.array([-1, -1]),
                        upper = np.array([1, 1]),
                        noise=True,
                        ocba_delta=1,
                    )
                design_control=design_control_init(init_size=ni, repeats=2)

                S = spot.Spot(fun=fun,
                            design_control=design_control,
                            fun_control=fun_control
                )
                S.initialize_design(X_start=X_start)
                print(f"S.X: {S.X}")
                print(f"S.y: {S.y}")
                X_shape_before = S.X.shape
                print(f"X_shape_before: {X_shape_before}")
                print(f"y_size_before: {S.y.size}")
                y_size_before = S.y.size
                S.update_stats()
                S.fit_surrogate()
                S.update_design()
                print(f"S.X: {S.X}")
                print(f"S.y: {S.y}")
                print(f"S.n_points: {S.n_points}")
                print(f"S.ocba_delta: {S.ocba_delta}")
                print(f"X_shape_after: {S.X.shape}")
                print(f"y_size_after: {S.y.size}")
                # compare the shapes of the X and y values before and after the update_design method
                assert X_shape_before[0] + S.n_points * S.fun_repeats + S.ocba_delta == S.X.shape[0]
                assert X_shape_before[1] == S.X.shape[1]
                assert y_size_before + S.n_points * S.fun_repeats + S.ocba_delta == S.y.size

        """
        # OCBA (only if noise). Determination of the OCBA points depends on the
        # old X and y values.
        if self.noise and self.ocba_delta > 0 and not np.all(self.var_y > 0) and (self.mean_X.shape[0] <= 2):
            logger.warning("self.var_y <= 0. OCBA points are not generated:")
            logger.warning("There are less than 3 points or points with no variance information.")
            logger.debug("In update_design(): self.mean_X: %s", self.mean_X)
            logger.debug("In update_design(): self.var_y: %s", self.var_y)
        if self.noise and self.ocba_delta > 0 and np.all(self.var_y > 0) and (self.mean_X.shape[0] > 2):
            X_ocba = get_ocba_X(self.mean_X, self.mean_y, self.var_y, self.ocba_delta)
        else:
            X_ocba = None
        # Determine the new X0 values based on the old X and y values:
        X0 = self.get_new_X0()
        # Append OCBA points to the new design points:
        if self.noise and self.ocba_delta > 0 and np.all(self.var_y > 0):
            X0 = append(X_ocba, X0, axis=0)
        X_all = self.to_all_dim_if_needed(X0)
        logger.debug(
            "In update_design(): self.fun_control sigma and seed passed to fun(): %s %s",
            self.fun_control["sigma"],
            self.fun_control["seed"],
        )
        # (S-18): Evaluating New Solutions:
        y0 = self.fun(X=X_all, fun_control=self.fun_control)
        X0, y0 = remove_nan(X0, y0)
        # Append New Solutions:
        self.X = np.append(self.X, X0, axis=0)
        self.y = np.append(self.y, y0)

    def fit_surrogate(self) -> None:
        """
        Fit surrogate model. The surrogate model
        is fitted to the data stored in `self.X` and `self.y`.
        It uses the generic `fit()` method of the
        surrogate model `surrogate`. The default surrogate model is
        an instance from spotPython's `Kriging` class.
        Args:
            self (object): Spot object

        Returns:
            (NoneType): None

        Attributes:
            self.surrogate (object): surrogate model

        Note:
            * As shown in https://sequential-parameter-optimization.github.io/Hyperparameter-Tuning-Cookbook/
            other surrogate models can be used as well.

        Examples:
                >>> import numpy as np
                    from spotPython.fun.objectivefunctions import analytical
                    from spotPython.spot import spot
                    from spotPython.utils.init import (
                    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                    )
                    # number of initial points:
                    ni = 0
                    X_start = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]])
                    fun = analytical().fun_sphere
                    fun_control = fun_control_init(
                        lower = np.array([-1, -1]),
                        upper = np.array([1, 1])
                        )
                    design_control=design_control_init(init_size=ni)
                    S = spot.Spot(fun=fun,
                                fun_control=fun_control,
                                design_control=design_control,)
                    S.initialize_design(X_start=X_start)
                    S.update_stats()
                    S.fit_surrogate()

        """
        logger.debug("In fit_surrogate(): self.X: %s", self.X)
        logger.debug("In fit_surrogate(): self.y: %s", self.y)
        logger.debug("In fit_surrogate(): self.X.shape: %s", self.X.shape)
        logger.debug("In fit_surrogate(): self.y.shape: %s", self.y.shape)
        X_points = self.X.shape[0]
        y_points = self.y.shape[0]
        if X_points == y_points:
            if X_points > self.max_surrogate_points:
                X_S, y_S = select_distant_points(X=self.X, y=self.y, k=self.max_surrogate_points)
            else:
                X_S = self.X
                y_S = self.y
            self.surrogate.fit(X_S, y_S)
        else:
            logger.warning("X and y have different sizes. Surrogate not fitted.")
        if self.show_models:
            self.plot_model()

    def show_progress_if_needed(self, timeout_start) -> None:
        """Show progress bar if `show_progress` is `True`. If
        self.progress_file is not `None`, the progress bar is saved
        in the file with the name `self.progress_file`.

        Args:
            self (object): Spot object
            timeout_start (float): start time

        Returns:
            (NoneType): None
        """
        if not self.show_progress:
            return
        if isfinite(self.fun_evals):
            progress_bar(progress=self.counter / self.fun_evals, y=self.min_y, filename=self.progress_file)
        else:
            progress_bar(
                progress=(time.time() - timeout_start) / (self.max_time * 60), y=self.min_y, filename=self.progress_file
            )

    def generate_design(self, size, repeats, lower, upper) -> np.array:
        return self.design.scipy_lhd(n=size, repeats=repeats, lower=lower, upper=upper)

    def update_stats(self) -> None:
        """
        Update the following stats: 1. `min_y` 2. `min_X` 3. `counter`
        If `noise` is `True`, additionally the following stats are computed: 1. `mean_X`
        2. `mean_y` 3. `min_mean_y` 4. `min_mean_X`.

        Args:
            self (object): Spot object

        Returns:
            (NoneType): None

        Attributes:
            self.min_y (float): minimum y value
            self.min_X (numpy.ndarray): X value of the minimum y value
            self.counter (int): number of function evaluations
            self.mean_X (numpy.ndarray): mean X values
            self.mean_y (numpy.ndarray): mean y values
            self.var_y (numpy.ndarray): variance of y values
            self.min_mean_y (float): minimum mean y value
            self.min_mean_X (numpy.ndarray): X value of the minimum mean y value

        """
        self.min_y = min(self.y)
        self.min_X = self.X[argmin(self.y)]
        self.counter = self.y.size
        self.fun_control.update({"counter": self.counter})
        # Update aggregated x and y values (if noise):
        if self.noise:
            Z = aggregate_mean_var(X=self.X, y=self.y)
            self.mean_X = Z[0]
            self.mean_y = Z[1]
            self.var_y = Z[2]
            # X value of the best mean y value so far:
            self.min_mean_X = self.mean_X[argmin(self.mean_y)]
            # variance of the best mean y value so far:
            self.min_var_y = self.var_y[argmin(self.mean_y)]
            # best mean y value so far:
            self.min_mean_y = self.mean_y[argmin(self.mean_y)]

    def update_writer(self) -> None:
        if self.spot_writer is not None:
            writer = self.spot_writer
            # get the last y value:
            y_last = self.y[-1].copy()
            if self.noise is False:
                y_min = self.min_y.copy()
                X_min = self.min_X.copy()
                # y_min: best y value so far
                # y_last: last y value, can be worse than y_min
                writer.add_scalars("spot_y", {"min": y_min, "last": y_last}, self.counter)
                # X_min: X value of the best y value so far
                writer.add_scalars("spot_X", {f"X_{i}": X_min[i] for i in range(self.k)}, self.counter)
            else:
                # get the last n y values:
                y_last_n = self.y[-self.fun_repeats :].copy()
                # y_min_mean: best mean y value so far
                y_min_mean = self.min_mean_y.copy()
                # X_min_mean: X value of the best mean y value so far
                X_min_mean = self.min_mean_X.copy()
                # y_min_var: variance of the min y value so far
                y_min_var = self.min_var_y.copy()
                writer.add_scalar("spot_y_min_var", y_min_var, self.counter)
                # y_min_mean: best mean y value so far (see above)
                writer.add_scalar("spot_y", y_min_mean, self.counter)
                # last n y values (noisy):
                writer.add_scalars(
                    "spot_y", {f"y_last_n{i}": y_last_n[i] for i in range(self.fun_repeats)}, self.counter
                )
                # X_min_mean: X value of the best mean y value so far (see above)
                writer.add_scalars(
                    "spot_X_noise", {f"X_min_mean{i}": X_min_mean[i] for i in range(self.k)}, self.counter
                )
            # get last value of self.X and convert to dict. take the values from self.var_name as keys:
            X_last = self.X[-1].copy()
            config = {self.var_name[i]: X_last[i] for i in range(self.k)}
            # hyperparameters X and value y of the last configuration:
            writer.add_hparams(config, {"spot_y": y_last})
            writer.flush()

    def suggest_new_X(self) -> np.array:
        """
        Compute `n_points` new infill points in natural units.
        These diffrent points are computed by the optimizer using increasing seed.
        The optimizer searches in the ranges from `lower_j` to `upper_j`.
        The method `infill()` is used as the objective function.

        Returns:
            (numpy.ndarray): `n_points` infill points in natural units, each of dim k

        Note:
            This is step (S-14a) in [bart21i].

        Examples:
            >>> import numpy as np
                from spotPython.spot import spot
                from spotPython.fun.objectivefunctions import analytical
                from spotPython.utils.init import (
                    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                    )
                nn = 3
                fun_sphere = analytical().fun_sphere
                fun_control = fun_control_init(
                        lower = np.array([-1, -1]),
                        upper = np.array([1, 1]),
                        n_points=nn,
                        )
                spot_1 = spot.Spot(
                    fun=fun_sphere,
                    fun_control=fun_control,
                    )
                # (S-2) Initial Design:
                spot_1.X = spot_1.design.scipy_lhd(
                    spot_1.design_control["init_size"], lower=spot_1.lower, upper=spot_1.upper
                )
                print(f"spot_1.X: {spot_1.X}")
                # (S-3): Eval initial design:
                spot_1.y = spot_1.fun(spot_1.X)
                print(f"spot_1.y: {spot_1.y}")
                spot_1.fit_surrogate()
                X0 = spot_1.suggest_new_X()
                print(f"X0: {X0}")
                assert X0.size == spot_1.n_points * spot_1.k
                assert X0.ndim == 2
                assert X0.shape[0] == nn
                assert X0.shape[1] == 2
                spot_1.X: [[ 0.86352963  0.7892358 ]
                            [-0.24407197 -0.83687436]
                            [ 0.36481882  0.8375811 ]
                            [ 0.415331    0.54468512]
                            [-0.56395091 -0.77797854]
                            [-0.90259409 -0.04899292]
                            [-0.16484832  0.35724741]
                            [ 0.05170659  0.07401196]
                            [-0.78548145 -0.44638164]
                            [ 0.64017497 -0.30363301]]
                spot_1.y: [1.36857656 0.75992983 0.83463487 0.46918172 0.92329124 0.8170764
                0.15480068 0.00815134 0.81623768 0.502017  ]
                X0: [[0.00154544 0.003962  ]
                    [0.00165526 0.00410847]
                    [0.00165685 0.0039177 ]]
        """
        # (S-14a) Optimization on the surrogate:
        new_X = np.zeros([self.n_points, self.k], dtype=float)
        optimizer_name = self.optimizer.__name__
        optimizers = {
            "dual_annealing": lambda: self.optimizer(func=self.infill, bounds=self.de_bounds),
            "differential_evolution": lambda: self.optimizer(
                func=self.infill,
                bounds=self.de_bounds,
                maxiter=self.optimizer_control["max_iter"],
                seed=self.optimizer_control["seed"],
            ),
            "direct": lambda: self.optimizer(func=self.infill, bounds=self.de_bounds, eps=1e-2),
            "shgo": lambda: self.optimizer(func=self.infill, bounds=self.de_bounds),
            "basinhopping": lambda: self.optimizer(func=self.infill, x0=self.min_X),
            "default": lambda: self.optimizer(func=self.infill, bounds=self.de_bounds),
        }
        for i in range(self.n_points):
            self.optimizer_control["seed"] = self.optimizer_control["seed"] + i
            result = optimizers.get(optimizer_name, optimizers["default"])()
            new_X[i][:] = result.x
        return np.unique(new_X, axis=0)

    def infill(self, x) -> float:
        """
        Infill (acquisition) function. Evaluates one point on the surrogate via `surrogate.predict(x.reshape(1,-1))`,
        if `sklearn` surrogates are used or `surrogate.predict(x.reshape(1,-1), return_val=self.infill_criterion)`
        if the internal surrogate `kriging` is selected.
        This method is passed to the optimizer in `suggest_new_X`, i.e., the optimizer is called via
        `self.optimizer(func=self.infill)`.

        Args:
            x (array): point in natural units with shape `(1, dim)`.

        Returns:
            (numpy.ndarray): value based on infill criterion, e.g., `"ei"`. Shape `(1,)`.
                The objective function value `y` that is used as a base value for the
                infill criterion is calculated in natural units.

        Note:
            This is step (S-12) in [bart21i].
        """
        # Reshape x to have shape (1, -1) because the predict method expects a 2D array
        X = x.reshape(1, -1)
        if isinstance(self.surrogate, Kriging):
            return self.surrogate.predict(X, return_val=self.infill_criterion)
        else:
            return self.surrogate.predict(X)

    def plot_progress(
        self, show=True, log_x=False, log_y=False, filename="plot.png", style=["ko", "k", "ro-"], dpi=300
    ) -> None:
        """Plot the progress of the hyperparameter tuning (optimization).

        Args:
            show (bool):
                Show the plot.
            log_x (bool):
                Use logarithmic scale for x-axis.
            log_y (bool):
                Use logarithmic scale for y-axis.
            filename (str):
                Filename to save the plot.
            style (list):
                Style of the plot. Default: ['k', 'ro-'], i.e., the initial points are plotted as a black line
                and the subsequent points as red dots connected by a line.

        Returns:
            None

        Examples:
            >>> import numpy as np
                from spotPython.fun.objectivefunctions import analytical
                from spotPython.spot import spot
                from spotPython.utils.init import (
                    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                    )
                # number of initial points:
                ni = 7
                # number of points
                fun_evals = 10
                fun = analytical().fun_sphere
                fun_control = fun_control_init(
                    lower = np.array([-1, -1]),
                    upper = np.array([1, 1])
                    fun_evals=fun_evals,
                    tolerance_x = np.sqrt(np.spacing(1))
                    )
                design_control=design_control_init(init_size=ni)
                surrogate_control=surrogate_control_init(n_theta=3)
                S = spot.Spot(fun=fun,
                            fun_control=fun_control
                            design_control=design_control,
                            surrogate_control=surrogate_control,)
                S.run()
                S.plot_progress(log_y=True)

        """
        fig = pylab.figure(figsize=(9, 6))
        s_y = pd.Series(self.y)
        s_c = s_y.cummin()
        n_init = self.design_control["init_size"] * self.design_control["repeats"]

        ax = fig.add_subplot(211)
        if n_init <= len(s_y):
            ax.plot(
                range(1, n_init + 1),
                s_y[:n_init],
                style[0],
                range(1, n_init + 2),
                [s_c[:n_init].min()] * (n_init + 1),
                style[1],
                range(n_init + 1, len(s_c) + 1),
                s_c[n_init:],
                style[2],
            )
        else:
            # plot only s_y values:
            ax.plot(range(1, len(s_y) + 1), s_y, style[0])
            logger.warning("Less evaluations ({len(s_y)}) than initial design points ({n_init}).")
        ax.set_xlabel("Iteration")
        if log_x:
            ax.set_xscale("log")
        if log_y:
            ax.set_yscale("log")
        if filename is not None:
            pylab.savefig(filename, dpi=dpi, bbox_inches="tight")
        if show:
            pylab.show()

    def plot_model(self, y_min=None, y_max=None) -> None:
        """
        Plot the model fit for 1-dim objective functions.

        Args:
            self (object):
                spot object
            y_min (float, optional):
                y range, lower bound.
            y_max (float, optional):
                y range, upper bound.

        Returns:
            None

        Examples:
            >>> import numpy as np
                from spotPython.utils.init import (
                    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                    )
                from spotPython.fun.objectivefunctions import analytical
                from spotPython.spot import spot
                # number of initial points:
                ni = 3
                # number of points
                fun_evals = 7
                fun = analytical().fun_sphere
                fun_control = fun_control_init(
                    lower = np.array([-1]),
                    upper = np.array([1]),
                    fun_evals=fun_evals,
                    tolerance_x = np.sqrt(np.spacing(1))
                    )
                design_control=design_control_init(init_size=ni)

                S = spot.Spot(fun=fun,
                            fun_control=fun_control,
                            design_control=design_control
                S.run()
                S.plot_model()
        """
        if self.k == 1:
            X_test = np.linspace(self.lower[0], self.upper[0], 100)
            y_test = self.fun(X=X_test.reshape(-1, 1), fun_control=self.fun_control)
            if isinstance(self.surrogate, Kriging):
                y_hat = self.surrogate.predict(X_test[:, np.newaxis], return_val="y")
            else:
                y_hat = self.surrogate.predict(X_test[:, np.newaxis])
            plt.plot(X_test, y_hat, label="Model")
            plt.plot(X_test, y_test, label="True function")
            plt.scatter(self.X, self.y, edgecolor="b", s=20, label="Samples")
            plt.scatter(self.X[-1], self.y[-1], edgecolor="r", s=30, label="Last Sample")
            if self.noise:
                plt.scatter(self.min_mean_X, self.min_mean_y, edgecolor="g", s=30, label="Best Sample (mean)")
            else:
                plt.scatter(self.min_X, self.min_y, edgecolor="g", s=30, label="Best Sample")
            plt.xlabel("x")
            plt.ylabel("y")
            plt.xlim((self.lower[0], self.upper[0]))
            if y_min is None:
                y_min = min([min(self.y), min(y_test)])
            if y_max is None:
                y_max = max([max(self.y), max(y_test)])
            plt.ylim((y_min, y_max))
            plt.legend(loc="best")
            # plt.title(self.surrogate.__class__.__name__ + ". " + str(self.counter) + ": " + str(self.min_y))
            if self.noise:
                plt.title(
                    "fun_evals: "
                    + str(self.counter)
                    + ". min_y (noise): "
                    + str(np.round(self.min_y, 6))
                    + " min_mean_y: "
                    + str(np.round(self.min_mean_y, 6))
                )
            else:
                plt.title("fun_evals: " + str(self.counter) + ". min_y: " + str(np.round(self.min_y, 6)))
            plt.show()

    def print_results(self, print_screen=True, dict=None) -> list[str]:
        """Print results from the run:
            1. min y
            2. min X
            If `noise == True`, additionally the following values are printed:
            3. min mean y
            4. min mean X

        Args:
            print_screen (bool, optional):
                print results to screen

        Returns:
            output (list):
                list of results
        """
        output = []
        if print_screen:
            print(f"min y: {self.min_y}")
            if self.noise:
                print(f"min mean y: {self.min_mean_y}")
        if self.noise:
            res = self.to_all_dim(self.min_mean_X.reshape(1, -1))
        else:
            res = self.to_all_dim(self.min_X.reshape(1, -1))
        for i in range(res.shape[1]):
            if self.all_var_name is None:
                var_name = "x" + str(i)
            else:
                var_name = self.all_var_name[i]
                var_type = self.all_var_type[i]
                if var_type == "factor" and dict is not None:
                    val = get_ith_hyperparameter_name_from_fun_control(fun_control=dict, key=var_name, i=int(res[0][i]))
                else:
                    val = res[0][i]
            if print_screen:
                print(var_name + ":", val)
            output.append([var_name, val])
        return output

    def print_results_old(self, print_screen=True, dict=None) -> list[str]:
        """Print results from the run:
            1. min y
            2. min X
            If `noise == True`, additionally the following values are printed:
            3. min mean y
            4. min mean X

        Args:
            print_screen (bool, optional):
                print results to screen

        Returns:
            output (list):
                list of results
        """
        output = []
        if print_screen:
            print(f"min y: {self.min_y}")
        res = self.to_all_dim(self.min_X.reshape(1, -1))
        for i in range(res.shape[1]):
            if self.all_var_name is None:
                var_name = "x" + str(i)
            else:
                var_name = self.all_var_name[i]
                var_type = self.all_var_type[i]
                if var_type == "factor" and dict is not None:
                    val = get_ith_hyperparameter_name_from_fun_control(fun_control=dict, key=var_name, i=int(res[0][i]))
                else:
                    val = res[0][i]
            if print_screen:
                print(var_name + ":", val)
            output.append([var_name, val])
        if self.noise:
            res = self.to_all_dim(self.min_mean_X.reshape(1, -1))
            if print_screen:
                print(f"min mean y: {self.min_mean_y}")
            for i in range(res.shape[1]):
                var_name = "x" + str(i) if self.all_var_name is None else self.all_var_name[i]
                if print_screen:
                    print(var_name + ":", res[0][i])
                output.append([var_name, res[0][i]])
        return output

    def get_tuned_hyperparameters(self, fun_control=None) -> dict:
        """Return the tuned hyperparameter values from the run.
        If `noise == True`, the mean values are returned.

        Args:
            fun_control (dict, optional):
                fun_control dictionary

        Returns:
            (dict): dictionary of tuned hyperparameters.

        Examples:
            >>> from spotPython.utils.device import getDevice
                from math import inf
                from spotPython.utils.init import fun_control_init
                import numpy as np
                from spotPython.hyperparameters.values import set_control_key_value
                from spotPython.data.diabetes import Diabetes
                MAX_TIME = 1
                FUN_EVALS = 10
                INIT_SIZE = 5
                WORKERS = 0
                PREFIX="037"
                DEVICE = getDevice()
                DEVICES = 1
                TEST_SIZE = 0.4
                TORCH_METRIC = "mean_squared_error"
                dataset = Diabetes()
                fun_control = fun_control_init(
                    _L_in=10,
                    _L_out=1,
                    _torchmetric=TORCH_METRIC,
                    PREFIX=PREFIX,
                    TENSORBOARD_CLEAN=True,
                    data_set=dataset,
                    device=DEVICE,
                    enable_progress_bar=False,
                    fun_evals=FUN_EVALS,
                    log_level=50,
                    max_time=MAX_TIME,
                    num_workers=WORKERS,
                    show_progress=True,
                    test_size=TEST_SIZE,
                    tolerance_x=np.sqrt(np.spacing(1)),
                    )
                from spotPython.light.regression.netlightregression import NetLightRegression
                from spotPython.hyperdict.light_hyper_dict import LightHyperDict
                from spotPython.hyperparameters.values import add_core_model_to_fun_control
                add_core_model_to_fun_control(fun_control=fun_control,
                                            core_model=NetLightRegression,
                                            hyper_dict=LightHyperDict)
                from spotPython.hyperparameters.values import set_control_hyperparameter_value
                set_control_hyperparameter_value(fun_control, "l1", [7, 8])
                set_control_hyperparameter_value(fun_control, "epochs", [3, 5])
                set_control_hyperparameter_value(fun_control, "batch_size", [4, 5])
                set_control_hyperparameter_value(fun_control, "optimizer", [
                                "Adam",
                                "RAdam",
                            ])
                set_control_hyperparameter_value(fun_control, "dropout_prob", [0.01, 0.1])
                set_control_hyperparameter_value(fun_control, "lr_mult", [0.5, 5.0])
                set_control_hyperparameter_value(fun_control, "patience", [2, 3])
                set_control_hyperparameter_value(fun_control, "act_fn",[
                                "ReLU",
                                "LeakyReLU"
                            ] )
                from spotPython.utils.init import design_control_init, surrogate_control_init
                design_control = design_control_init(init_size=INIT_SIZE)
                surrogate_control = surrogate_control_init(noise=True,
                                                            n_theta=2)
                from spotPython.fun.hyperlight import HyperLight
                fun = HyperLight(log_level=50).fun
                from spotPython.spot import spot
                spot_tuner = spot.Spot(fun=fun,
                                    fun_control=fun_control,
                                    design_control=design_control,
                                    surrogate_control=surrogate_control)
                spot_tuner.run()
                spot_tuner.get_tuned_hyperparameters()
                    {'l1': 7.0,
                    'epochs': 5.0,
                    'batch_size': 4.0,
                    'act_fn': 0.0,
                    'optimizer': 0.0,
                    'dropout_prob': 0.01,
                    'lr_mult': 5.0,
                    'patience': 3.0,
                    'initialization': 1.0}

        """
        output = []
        if self.noise:
            res = self.to_all_dim(self.min_mean_X.reshape(1, -1))
        else:
            res = self.to_all_dim(self.min_X.reshape(1, -1))
        for i in range(res.shape[1]):
            if self.all_var_name is None:
                var_name = "x" + str(i)
            else:
                var_name = self.all_var_name[i]
                var_type = self.all_var_type[i]
                if var_type == "factor" and fun_control is not None:
                    val = get_ith_hyperparameter_name_from_fun_control(
                        fun_control=fun_control, key=var_name, i=int(res[0][i])
                    )
                else:
                    val = res[0][i]
            output.append([var_name, val])
        # convert list to a dictionary
        output = dict(output)
        return output

    def chg(self, x, y, z0, i, j) -> list:
        """
        Change the values of elements at indices `i` and `j` in the array `z0` to `x` and `y`, respectively.

        Args:
            x (int or float):
                The new value for the element at index `i`.
            y (int or float):
                The new value for the element at index `j`.
            z0 (list or numpy.ndarray):
                The array to be modified.
            i (int):
                The index of the element to be changed to `x`.
            j (int):
                The index of the element to be changed to `y`.

        Returns:
            (list) or (numpy.ndarray): The modified array.

        Examples:
                >>> import numpy as np
                    from spotPython.fun.objectivefunctions import analytical
                    from spotPython.spot import spot
                    from spotPython.utils.init import (
                        fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                    )
                    fun = analytical().fun_sphere
                    fun_control = fun_control_init(
                        lower = np.array([-1]),
                        upper = np.array([1]),
                    )
                    S = spot.Spot(fun=fun,
                                func_control=fun_control)
                    z0 = [1, 2, 3]
                    print(f"Before: {z0}")
                    new_val_1 = 4
                    new_val_2 = 5
                    index_1 = 0
                    index_2 = 2
                    S.chg(x=new_val_1, y=new_val_2, z0=z0, i=index_1, j=index_2)
                    print(f"After: {z0}")
                    Before: [1, 2, 3]
                    After: [4, 2, 5]
        """
        z0[i] = x
        z0[j] = y
        return z0

    def plot_contour(
        self,
        i=0,
        j=1,
        min_z=None,
        max_z=None,
        show=True,
        filename=None,
        n_grid=25,
        contour_levels=10,
        dpi=200,
        title="",
    ) -> None:
        """Plot the contour of any dimension.

        Args:
            i (int):
                the first dimension
            j (int):
                the second dimension
            min_z (float):
                the minimum value of z
            max_z (float):
                the maximum value of z
            show (bool):
                show the plot
            filename (str):
                save the plot to a file
            n_grid (int):
                number of grid points
            contour_levels (int):
                number of contour levels
            dpi (int):
                dpi of the plot. Default is 200.
            title (str):
                title of the plot

        Returns:
            None

        Examples:
            >>> import numpy as np
                from spotPython.fun.objectivefunctions import analytical
                from spotPython.spot import spot
                from spotPython.utils.init import (
                    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                    )
                # number of initial points:
                ni = 5
                # number of points
                fun_evals = 10
                fun = analytical().fun_sphere
                fun_control = fun_control_init(
                    lower = np.array([-1, -1, -1]),
                    upper = np.array([1, 1, 1]),
                    fun_evals=fun_evals,
                    tolerance_x = np.sqrt(np.spacing(1))
                    )
                design_control=design_control_init(init_size=ni)
                surrogate_control=surrogate_control_init(n_theta=3)
                S = spot.Spot(fun=fun,
                            fun_control=fun_control,
                            design_control=design_control,
                            surrogate_control=surrogate_control,)
                S.run()
                S.plot_important_hyperparameter_contour()
        """
        fig = pylab.figure(figsize=(9, 6))
        # lower and upper
        x = np.linspace(self.lower[i], self.upper[i], num=n_grid)
        y = np.linspace(self.lower[j], self.upper[j], num=n_grid)
        X, Y = meshgrid(x, y)
        # generate a numpy array with the X and Y values
        z0 = np.mean(np.array([self.lower, self.upper]), axis=0)
        # Predict based on the optimized results
        zz = array([self.surrogate.predict(array([self.chg(x, y, z0, i, j)])) for x, y in zip(ravel(X), ravel(Y))])
        zs = zz[:, 0]
        Z = zs.reshape(X.shape)
        if min_z is None:
            min_z = np.min(Z)
        if max_z is None:
            max_z = np.max(Z)
        ax = fig.add_subplot(221)
        # plot predicted values:
        plt.contourf(X, Y, Z, contour_levels, zorder=1, cmap="jet", vmin=min_z, vmax=max_z)
        if self.var_name is None:
            plt.xlabel("x" + str(i))
            plt.ylabel("x" + str(j))
        else:
            plt.xlabel("x" + str(i) + ": " + self.var_name[i])
            plt.ylabel("x" + str(j) + ": " + self.var_name[j])
        # plt.title("Surrogate")
        pylab.colorbar()
        ax = fig.add_subplot(222, projection="3d")
        ax.plot_surface(X, Y, Z, rstride=3, cstride=3, alpha=0.9, cmap="jet", vmin=min_z, vmax=max_z)
        if self.var_name is None:
            plt.xlabel("x" + str(i))
            plt.ylabel("x" + str(j))
        else:
            plt.xlabel("x" + str(i) + ": " + self.var_name[i])
            plt.ylabel("x" + str(j) + ": " + self.var_name[j])
        plt.title(title)
        if filename:
            pylab.savefig(filename, bbox_inches="tight", dpi=dpi, pad_inches=0),
        if show:
            pylab.show()

    def plot_important_hyperparameter_contour(
        self, threshold=0.0, filename=None, show=True, max_imp=None, title="", scale_global=False
    ) -> None:
        """
        Plot the contour of important hyperparameters.
        Calls `plot_contour` for each pair of important hyperparameters.
        Importance can be specified by the threshold.

        Args:
            threshold (float):
                threshold for the importance. Not used any more in spotPython >= 0.13.2.
            filename (str):
                filename of the plot
            show (bool):
                show the plot. Default is `True`.
            max_imp (int):
                maximum number of important hyperparameters. If there are more important hyperparameters
                than `max_imp`, only the max_imp important ones are selected.
            title (str):
                title of the plots

        Returns:
            None.

        Examples:
            >>> import numpy as np
                from spotPython.fun.objectivefunctions import analytical
                from spotPython.spot import spot
                from spotPython.utils.init import (
                    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                    )
                # number of initial points:
                ni = 5
                # number of points
                fun_evals = 10
                fun = analytical().fun_sphere
                fun_control = fun_control_init(
                    lower = np.array([-1, -1, -1]),
                    upper = np.array([1, 1, 1]),
                    fun_evals=fun_evals,
                    tolerance_x = np.sqrt(np.spacing(1))
                    )
                design_control=design_control_init(init_size=ni)
                surrogate_control=surrogate_control_init(n_theta=3)
                S = spot.Spot(fun=fun,
                            fun_control=fun_control,
                            design_control=design_control,
                            surrogate_control=surrogate_control,)
                S.run()
                S.plot_important_hyperparameter_contour()

        """
        impo = self.print_importance(threshold=threshold, print_screen=True)
        print(f"impo: {impo}")
        indices = sort_by_kth_and_return_indices(array=impo, k=1)
        print(f"indices: {indices}")
        # take the first max_imp values from the indices array
        if max_imp is not None:
            indices = indices[:max_imp]
        print(f"indices after max_imp selection: {indices}")
        if scale_global:
            min_z = min(self.y)
            max_z = max(self.y)
        else:
            min_z = None
            max_z = None
        for i in indices:
            for j in indices:
                if j > i:
                    if filename is not None:
                        filename_full = filename + "_contour_" + str(i) + "_" + str(j) + ".png"
                    else:
                        filename_full = None
                    self.plot_contour(
                        i=i, j=j, min_z=min_z, max_z=max_z, filename=filename_full, show=show, title=title
                    )

    def get_importance(self) -> list:
        """Get importance of each variable and return the results as a list.

        Returns:
            output (list):
                list of results

        """
        if self.surrogate.n_theta > 1 and self.var_name is not None:
            output = [0] * len(self.all_var_name)
            theta = np.power(10, self.surrogate.theta)
            imp = 100 * theta / np.max(theta)
            ind = find_indices(A=self.var_name, B=self.all_var_name)
            j = 0
            for i in ind:
                output[i] = imp[j]
                j = j + 1
            return output
        else:
            print("Importance requires more than one theta values (n_theta>1).")

    def print_importance(self, threshold=0.1, print_screen=True) -> list:
        """Print importance of each variable and return the results as a list.

        Args:
            threshold (float):
                threshold for printing
            print_screen (boolean):
                if `True`, values are also printed on the screen. Default is `True`.

        Returns:
            output (list):
                list of results
        """
        output = []
        if self.surrogate.n_theta > 1:
            theta = np.power(10, self.surrogate.theta)
            imp = 100 * theta / np.max(theta)
            # imp = imp[imp >= threshold]
            if self.var_name is None:
                for i in range(len(imp)):
                    if imp[i] >= threshold:
                        if print_screen:
                            print("x", i, ": ", imp[i])
                        output.append("x" + str(i) + ": " + str(imp[i]))
            else:
                var_name = [self.var_name[i] for i in range(len(imp))]
                for i in range(len(imp)):
                    if imp[i] >= threshold:
                        if print_screen:
                            print(var_name[i] + ": ", imp[i])
                    output.append([var_name[i], imp[i]])
        else:
            print("Importance requires more than one theta values (n_theta>1).")
        return output

    def plot_importance(self, threshold=0.1, filename=None, dpi=300, show=True) -> None:
        """Plot the importance of each variable.

        Args:
            threshold (float):
                The threshold of the importance.
            filename (str):
                The filename of the plot.
            dpi (int):
                The dpi of the plot.
            show (bool):
                Show the plot. Default is `True`.

        Returns:
            None
        """
        if self.surrogate.n_theta > 1:
            theta = np.power(10, self.surrogate.theta)
            imp = 100 * theta / np.max(theta)
            idx = np.where(imp > threshold)[0]
            if self.var_name is None:
                plt.bar(range(len(imp[idx])), imp[idx])
                plt.xticks(range(len(imp[idx])), ["x" + str(i) for i in idx])
            else:
                var_name = [self.var_name[i] for i in idx]
                plt.bar(range(len(imp[idx])), imp[idx])
                plt.xticks(range(len(imp[idx])), var_name)
            if filename is not None:
                plt.savefig(filename, bbox_inches="tight", dpi=dpi)
            if show:
                plt.show()

    def parallel_plot(self, show=False) -> go.Figure:
        """
        Parallel plot.

        Args:
            self (object):
                Spot object
            show (bool):
                show the plot. Default is `False`.

        Returns:
                fig (plotly.graph_objects.Figure): figure object

        Examples:
            >>> import numpy as np
                from spotPython.fun.objectivefunctions import analytical
                from spotPython.spot import spot
                from spotPython.utils.init import (
                    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                    )
                # number of initial points:
                ni = 5
                # number of points
                fun_evals = 10
                fun = analytical().fun_sphere
                fun_control = fun_control_init(
                    lower = np.array([-1, -1, -1]),
                    upper = np.array([1, 1, 1]),
                    fun_evals=fun_evals,
                    tolerance_x = np.sqrt(np.spacing(1))
                    )
                design_control=design_control_init(init_size=ni)
                surrogate_control=surrogate_control_init(n_theta=3)
                S = spot.Spot(fun=fun,
                            fun_control=fun_control,
                            design_control=design_control,
                            surrogate_control=surrogate_control,)
                S.run()
                S.parallel_plot()

        """
        X = self.X
        y = self.y
        df = pd.DataFrame(np.concatenate((X, y.reshape(-1, 1)), axis=1), columns=self.var_name + ["y"])

        fig = go.Figure(
            data=go.Parcoords(
                line=dict(color=df["y"], colorscale="Jet", showscale=True, cmin=min(df["y"]), cmax=max(df["y"])),
                dimensions=list(
                    [
                        dict(range=[min(df.iloc[:, i]), max(df.iloc[:, i])], label=df.columns[i], values=df.iloc[:, i])
                        for i in range(len(df.columns) - 1)
                    ]
                ),
            )
        )
        if show:
            fig.show()
        return fig

    def save_experiment(self, filename=None) -> None:
        """
        Save the experiment to a file.
        """
        design_control = copy.deepcopy(self.design_control)
        fun_control = copy.deepcopy(self.fun_control)
        optimizer_control = copy.deepcopy(self.optimizer_control)
        spot_tuner = copy.deepcopy(self)
        surrogate_control = copy.deepcopy(self.surrogate_control)

        # remove the key "spot_writer" from the fun_control dictionary,
        # because it is not serializable.
        # TODO: It will be re-added when the experiment is loaded.
        fun_control.pop("spot_writer", None)
        experiment = {
            "design_control": design_control,
            "fun_control": fun_control,
            "optimizer_control": optimizer_control,
            "spot_tuner": spot_tuner,
            "surrogate_control": surrogate_control,
        }
        # check if the key "spot_writer" is in the fun_control dictionary
        if "spot_writer" in fun_control and fun_control["spot_writer"] is not None:
            fun_control["spot_writer"].close()
        PREFIX = fun_control["PREFIX"]
        if filename is None and PREFIX is not None:
            filename = get_experiment_filename(PREFIX)
        if filename is not None:
            with open(filename, "wb") as handle:
                pickle.dump(experiment, handle, protocol=pickle.HIGHEST_PROTOCOL)

chg(x, y, z0, i, j)

Change the values of elements at indices i and j in the array z0 to x and y, respectively.

Parameters:

Name Type Description Default
x int or float

The new value for the element at index i.

required
y int or float

The new value for the element at index j.

required
z0 list or ndarray

The array to be modified.

required
i int

The index of the element to be changed to x.

required
j int

The index of the element to be changed to y.

required

Returns:

Type Description
list) or (numpy.ndarray

The modified array.

Examples:

>>> import numpy as np
    from spotPython.fun.objectivefunctions import analytical
    from spotPython.spot import spot
    from spotPython.utils.init import (
        fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
    )
    fun = analytical().fun_sphere
    fun_control = fun_control_init(
        lower = np.array([-1]),
        upper = np.array([1]),
    )
    S = spot.Spot(fun=fun,
                func_control=fun_control)
    z0 = [1, 2, 3]
    print(f"Before: {z0}")
    new_val_1 = 4
    new_val_2 = 5
    index_1 = 0
    index_2 = 2
    S.chg(x=new_val_1, y=new_val_2, z0=z0, i=index_1, j=index_2)
    print(f"After: {z0}")
    Before: [1, 2, 3]
    After: [4, 2, 5]
Source code in spotPython/spot/spot.py
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
def chg(self, x, y, z0, i, j) -> list:
    """
    Change the values of elements at indices `i` and `j` in the array `z0` to `x` and `y`, respectively.

    Args:
        x (int or float):
            The new value for the element at index `i`.
        y (int or float):
            The new value for the element at index `j`.
        z0 (list or numpy.ndarray):
            The array to be modified.
        i (int):
            The index of the element to be changed to `x`.
        j (int):
            The index of the element to be changed to `y`.

    Returns:
        (list) or (numpy.ndarray): The modified array.

    Examples:
            >>> import numpy as np
                from spotPython.fun.objectivefunctions import analytical
                from spotPython.spot import spot
                from spotPython.utils.init import (
                    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                )
                fun = analytical().fun_sphere
                fun_control = fun_control_init(
                    lower = np.array([-1]),
                    upper = np.array([1]),
                )
                S = spot.Spot(fun=fun,
                            func_control=fun_control)
                z0 = [1, 2, 3]
                print(f"Before: {z0}")
                new_val_1 = 4
                new_val_2 = 5
                index_1 = 0
                index_2 = 2
                S.chg(x=new_val_1, y=new_val_2, z0=z0, i=index_1, j=index_2)
                print(f"After: {z0}")
                Before: [1, 2, 3]
                After: [4, 2, 5]
    """
    z0[i] = x
    z0[j] = y
    return z0

de_serialize_dicts()

Deserialize the spot object and return the dictionaries.

Parameters:

Name Type Description Default
self object

Spot object

required

Returns:

Type Description
tuple

tuple containing dictionaries of spot object: fun_control (dict): function control dictionary, design_control (dict): design control dictionary, optimizer_control (dict): optimizer control dictionary, spot_tuner_control (dict): spot tuner control dictionary, and surrogate_control (dict): surrogate control dictionary

Source code in spotPython/spot/spot.py
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
def de_serialize_dicts(self) -> tuple:
    """
    Deserialize the spot object and return the dictionaries.

    Args:
        self (object):
            Spot object

    Returns:
        (tuple):
            tuple containing dictionaries of spot object:
            fun_control (dict): function control dictionary,
            design_control (dict): design control dictionary,
            optimizer_control (dict): optimizer control dictionary,
            spot_tuner_control (dict): spot tuner control dictionary, and
            surrogate_control (dict): surrogate control dictionary
    """
    spot_tuner = copy.deepcopy(self)
    spot_tuner_control = vars(spot_tuner)

    fun_control = copy.deepcopy(spot_tuner_control["fun_control"])
    design_control = copy.deepcopy(spot_tuner_control["design_control"])
    optimizer_control = copy.deepcopy(spot_tuner_control["optimizer_control"])
    surrogate_control = copy.deepcopy(spot_tuner_control["surrogate_control"])

    # remove keys from the dictionaries:
    spot_tuner_control.pop("fun_control", None)
    spot_tuner_control.pop("design_control", None)
    spot_tuner_control.pop("optimizer_control", None)
    spot_tuner_control.pop("surrogate_control", None)
    spot_tuner_control.pop("spot_writer", None)
    spot_tuner_control.pop("design", None)
    spot_tuner_control.pop("fun", None)
    spot_tuner_control.pop("optimizer", None)
    spot_tuner_control.pop("rng", None)
    spot_tuner_control.pop("surrogate", None)

    fun_control.pop("core_model", None)
    fun_control.pop("metric_river", None)
    fun_control.pop("metric_sklearn", None)
    fun_control.pop("metric_torch", None)
    fun_control.pop("prep_model", None)
    fun_control.pop("spot_writer", None)
    fun_control.pop("test", None)
    fun_control.pop("train", None)

    surrogate_control.pop("model_optimizer", None)
    surrogate_control.pop("surrogate", None)

    return (fun_control, design_control, optimizer_control, spot_tuner_control, surrogate_control)

fit_surrogate()

Fit surrogate model. The surrogate model is fitted to the data stored in self.X and self.y. It uses the generic fit() method of the surrogate model surrogate. The default surrogate model is an instance from spotPython’s Kriging class. Args: self (object): Spot object

Returns:

Type Description
NoneType

None

Attributes:

Name Type Description
self.surrogate object

surrogate model

Note
  • As shown in https://sequential-parameter-optimization.github.io/Hyperparameter-Tuning-Cookbook/ other surrogate models can be used as well.

Examples:

>>> import numpy as np
    from spotPython.fun.objectivefunctions import analytical
    from spotPython.spot import spot
    from spotPython.utils.init import (
    fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
    )
    # number of initial points:
    ni = 0
    X_start = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]])
    fun = analytical().fun_sphere
    fun_control = fun_control_init(
        lower = np.array([-1, -1]),
        upper = np.array([1, 1])
        )
    design_control=design_control_init(init_size=ni)
    S = spot.Spot(fun=fun,
                fun_control=fun_control,
                design_control=design_control,)
    S.initialize_design(X_start=X_start)
    S.update_stats()
    S.fit_surrogate()
Source code in spotPython/spot/spot.py
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
def fit_surrogate(self) -> None:
    """
    Fit surrogate model. The surrogate model
    is fitted to the data stored in `self.X` and `self.y`.
    It uses the generic `fit()` method of the
    surrogate model `surrogate`. The default surrogate model is
    an instance from spotPython's `Kriging` class.
    Args:
        self (object): Spot object

    Returns:
        (NoneType): None

    Attributes:
        self.surrogate (object): surrogate model

    Note:
        * As shown in https://sequential-parameter-optimization.github.io/Hyperparameter-Tuning-Cookbook/
        other surrogate models can be used as well.

    Examples:
            >>> import numpy as np
                from spotPython.fun.objectivefunctions import analytical
                from spotPython.spot import spot
                from spotPython.utils.init import (
                fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                )
                # number of initial points:
                ni = 0
                X_start = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]])
                fun = analytical().fun_sphere
                fun_control = fun_control_init(
                    lower = np.array([-1, -1]),
                    upper = np.array([1, 1])
                    )
                design_control=design_control_init(init_size=ni)
                S = spot.Spot(fun=fun,
                            fun_control=fun_control,
                            design_control=design_control,)
                S.initialize_design(X_start=X_start)
                S.update_stats()
                S.fit_surrogate()

    """
    logger.debug("In fit_surrogate(): self.X: %s", self.X)
    logger.debug("In fit_surrogate(): self.y: %s", self.y)
    logger.debug("In fit_surrogate(): self.X.shape: %s", self.X.shape)
    logger.debug("In fit_surrogate(): self.y.shape: %s", self.y.shape)
    X_points = self.X.shape[0]
    y_points = self.y.shape[0]
    if X_points == y_points:
        if X_points > self.max_surrogate_points:
            X_S, y_S = select_distant_points(X=self.X, y=self.y, k=self.max_surrogate_points)
        else:
            X_S = self.X
            y_S = self.y
        self.surrogate.fit(X_S, y_S)
    else:
        logger.warning("X and y have different sizes. Surrogate not fitted.")
    if self.show_models:
        self.plot_model()

get_importance()

Get importance of each variable and return the results as a list.

Returns:

Name Type Description
output list

list of results

Source code in spotPython/spot/spot.py
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
def get_importance(self) -> list:
    """Get importance of each variable and return the results as a list.

    Returns:
        output (list):
            list of results

    """
    if self.surrogate.n_theta > 1 and self.var_name is not None:
        output = [0] * len(self.all_var_name)
        theta = np.power(10, self.surrogate.theta)
        imp = 100 * theta / np.max(theta)
        ind = find_indices(A=self.var_name, B=self.all_var_name)
        j = 0
        for i in ind:
            output[i] = imp[j]
            j = j + 1
        return output
    else:
        print("Importance requires more than one theta values (n_theta>1).")

get_new_X0()

Get new design points. Calls suggest_new_X() and repairs the new design points, e.g., by repair_non_numeric() and selectNew().

Parameters:

Name Type Description Default
self object

Spot object

required

Returns:

Type Description
ndarray

new design points

Notes
  • self.design (object): an experimental design is used to generate new design points if no new design points are found, a new experimental design is generated.

Examples:

>>> import numpy as np
    from spotPython.fun.objectivefunctions import analytical
                   from spotPython.utils.init import (
        fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
        )
    from spotPython.spot import spot
    from spotPython.utils.init import fun_control_init
    # number of initial points:
    ni = 3
    X_start = np.array([[0, 1], [1, 0], [1, 1], [1, 1]])
    fun = analytical().fun_sphere
    fun_control = fun_control_init(
                n_points=10,
                ocba_delta=0,
                lower = np.array([-1, -1]),
                upper = np.array([1, 1])
    )
    design_control=design_control_init(init_size=ni)
    S = spot.Spot(fun=fun,
                    fun_control=fun_control
                    design_control=design_control,
    )
    S.initialize_design(X_start=X_start)
    S.update_stats()
    S.fit_surrogate()
    X_ocba = None
    X0 = S.get_new_X0()
    assert X0.shape[0] == S.n_points
    assert X0.shape[1] == S.lower.size
    # assert new points are in the interval [lower, upper]
    assert np.all(X0 >= S.lower)
    assert np.all(X0 <= S.upper)
    # print using 20 digits precision
    np.set_printoptions(precision=20)
    print(f"X0: {X0}")
Source code in spotPython/spot/spot.py
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
def get_new_X0(self) -> np.array:
    """
    Get new design points.
    Calls `suggest_new_X()` and repairs the new design points, e.g.,
    by `repair_non_numeric()` and `selectNew()`.

    Args:
        self (object): Spot object

    Returns:
        (numpy.ndarray): new design points

    Notes:
        * self.design (object): an experimental design is used to generate new design points
        if no new design points are found, a new experimental design is generated.

    Examples:
        >>> import numpy as np
            from spotPython.fun.objectivefunctions import analytical
                           from spotPython.utils.init import (
                fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                )
            from spotPython.spot import spot
            from spotPython.utils.init import fun_control_init
            # number of initial points:
            ni = 3
            X_start = np.array([[0, 1], [1, 0], [1, 1], [1, 1]])
            fun = analytical().fun_sphere
            fun_control = fun_control_init(
                        n_points=10,
                        ocba_delta=0,
                        lower = np.array([-1, -1]),
                        upper = np.array([1, 1])
            )
            design_control=design_control_init(init_size=ni)
            S = spot.Spot(fun=fun,
                            fun_control=fun_control
                            design_control=design_control,
            )
            S.initialize_design(X_start=X_start)
            S.update_stats()
            S.fit_surrogate()
            X_ocba = None
            X0 = S.get_new_X0()
            assert X0.shape[0] == S.n_points
            assert X0.shape[1] == S.lower.size
            # assert new points are in the interval [lower, upper]
            assert np.all(X0 >= S.lower)
            assert np.all(X0 <= S.upper)
            # print using 20 digits precision
            np.set_printoptions(precision=20)
            print(f"X0: {X0}")

    """
    # Try to generate self.fun_repeats new X0 points:
    X0 = self.suggest_new_X()
    X0 = repair_non_numeric(X0, self.var_type)
    # (S-16) Duplicate Handling:
    # Condition: select only X= that have min distance
    # to existing solutions
    X0, X0_ind = selectNew(A=X0, X=self.X, tolerance=self.tolerance_x)
    if X0.shape[0] > 0:
        # 1. There are X0 that fullfil the condition.
        # Note: The number of new X0 can be smaller than self.n_points!
        logger.debug("XO values are new: %s %s", X0_ind, X0)
        return repeat(X0, self.fun_repeats, axis=0)
        return X0
    # 2. No X0 found. Then generate self.n_points new solutions:
    else:
        self.design = spacefilling(k=self.k, seed=self.fun_control["seed"] + self.counter)
        X0 = self.generate_design(
            size=self.n_points, repeats=self.design_control["repeats"], lower=self.lower, upper=self.upper
        )
        X0 = repair_non_numeric(X0, self.var_type)
        logger.warning("No new XO found on surrogate. Generate new solution %s", X0)
        return X0

get_spot_attributes_as_df()

Get all attributes of the spot object as a pandas dataframe.

Returns:

Type Description
DataFrame

dataframe with all attributes of the spot object.

Examples:

>>> import numpy as np
    from math import inf
    from spotPython.fun.objectivefunctions import analytical
    from spotPython.spot import spot
                    from spotPython.utils.init import (
        fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
        )
    # number of initial points:
    ni = 7
    # number of points
    n = 10
    fun = analytical().fun_sphere
    fun_control = fun_control_init(
        lower = np.array([-1]),
        upper = np.array([1])
        fun_evals=n)
    design_control=design_control_init(init_size=ni)
    spot_1 = spot.Spot(fun=fun,
                fun_control=fun_control,
                design_control=design_control,)
    spot_1.run()
    df = spot_1.get_spot_attributes_as_df()
    df
        Attribute Name                                    Attribute Value
    0                   X  [[-0.3378148180708981], [0.698908280342222], [...
    1           all_lower                                               [-1]
    2           all_upper                                                [1]
    3        all_var_name                                               [x0]
    4        all_var_type                                              [num]
    5             counter                                                 10
    6           de_bounds                                          [[-1, 1]]
    7              design  <spotPython.design.spacefilling.spacefilling o...
    8      design_control                     {'init_size': 7, 'repeats': 1}
    9                 eps                                                0.0
    10        fun_control                         {'sigma': 0, 'seed': None}
    11          fun_evals                                                 10
    12        fun_repeats                                                  1
    13              ident                                            [False]
    14   infill_criterion                                                  y
    15                  k                                                  1
    16          log_level                                                 50
    17              lower                                               [-1]
    18           max_time                                                inf
    19             mean_X                                               None
    20             mean_y                                               None
    21              min_X                           [1.5392206722432657e-05]
    22         min_mean_X                                               None
    23         min_mean_y                                               None
    24              min_y                                                0.0
    25           n_points                                                  1
    26              noise                                              False
    27         ocba_delta                                                  0
    28  optimizer_control                    {'max_iter': 1000, 'seed': 125}
    29            red_dim                                              False
    30                rng                                   Generator(PCG64)
    31               seed                                                123
    32        show_models                                              False
    33      show_progress                                               True
    34        spot_writer                                               None
    35          surrogate  <spotPython.build.kriging.Kriging object at 0x...
    36  surrogate_control  {'noise': False, 'model_optimizer': <function ...
    37        tolerance_x                                                  0
    38              upper                                                [1]
    39           var_name                                               [x0]
    40           var_type                                              [num]
    41              var_y                                               None
    42                  y  [0.11411885130827397, 0.48847278433092195, 0.0...
Source code in spotPython/spot/spot.py
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
def get_spot_attributes_as_df(self) -> pd.DataFrame:
    """Get all attributes of the spot object as a pandas dataframe.

    Returns:
        (pandas.DataFrame): dataframe with all attributes of the spot object.

    Examples:
        >>> import numpy as np
            from math import inf
            from spotPython.fun.objectivefunctions import analytical
            from spotPython.spot import spot
                            from spotPython.utils.init import (
                fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                )
            # number of initial points:
            ni = 7
            # number of points
            n = 10
            fun = analytical().fun_sphere
            fun_control = fun_control_init(
                lower = np.array([-1]),
                upper = np.array([1])
                fun_evals=n)
            design_control=design_control_init(init_size=ni)
            spot_1 = spot.Spot(fun=fun,
                        fun_control=fun_control,
                        design_control=design_control,)
            spot_1.run()
            df = spot_1.get_spot_attributes_as_df()
            df
                Attribute Name                                    Attribute Value
            0                   X  [[-0.3378148180708981], [0.698908280342222], [...
            1           all_lower                                               [-1]
            2           all_upper                                                [1]
            3        all_var_name                                               [x0]
            4        all_var_type                                              [num]
            5             counter                                                 10
            6           de_bounds                                          [[-1, 1]]
            7              design  <spotPython.design.spacefilling.spacefilling o...
            8      design_control                     {'init_size': 7, 'repeats': 1}
            9                 eps                                                0.0
            10        fun_control                         {'sigma': 0, 'seed': None}
            11          fun_evals                                                 10
            12        fun_repeats                                                  1
            13              ident                                            [False]
            14   infill_criterion                                                  y
            15                  k                                                  1
            16          log_level                                                 50
            17              lower                                               [-1]
            18           max_time                                                inf
            19             mean_X                                               None
            20             mean_y                                               None
            21              min_X                           [1.5392206722432657e-05]
            22         min_mean_X                                               None
            23         min_mean_y                                               None
            24              min_y                                                0.0
            25           n_points                                                  1
            26              noise                                              False
            27         ocba_delta                                                  0
            28  optimizer_control                    {'max_iter': 1000, 'seed': 125}
            29            red_dim                                              False
            30                rng                                   Generator(PCG64)
            31               seed                                                123
            32        show_models                                              False
            33      show_progress                                               True
            34        spot_writer                                               None
            35          surrogate  <spotPython.build.kriging.Kriging object at 0x...
            36  surrogate_control  {'noise': False, 'model_optimizer': <function ...
            37        tolerance_x                                                  0
            38              upper                                                [1]
            39           var_name                                               [x0]
            40           var_type                                              [num]
            41              var_y                                               None
            42                  y  [0.11411885130827397, 0.48847278433092195, 0.0...

    """

    attributes = [attr for attr in dir(self) if not callable(getattr(self, attr)) and not attr.startswith("__")]
    values = [getattr(self, attr) for attr in attributes]
    df = pd.DataFrame({"Attribute Name": attributes, "Attribute Value": values})
    return df

get_tuned_hyperparameters(fun_control=None)

Return the tuned hyperparameter values from the run. If noise == True, the mean values are returned.

Parameters:

Name Type Description Default
fun_control dict

fun_control dictionary

None

Returns:

Type Description
dict

dictionary of tuned hyperparameters.

Examples:

>>> from spotPython.utils.device import getDevice
    from math import inf
    from spotPython.utils.init import fun_control_init
    import numpy as np
    from spotPython.hyperparameters.values import set_control_key_value
    from spotPython.data.diabetes import Diabetes
    MAX_TIME = 1
    FUN_EVALS = 10
    INIT_SIZE = 5
    WORKERS = 0
    PREFIX="037"
    DEVICE = getDevice()
    DEVICES = 1
    TEST_SIZE = 0.4
    TORCH_METRIC = "mean_squared_error"
    dataset = Diabetes()
    fun_control = fun_control_init(
        _L_in=10,
        _L_out=1,
        _torchmetric=TORCH_METRIC,
        PREFIX=PREFIX,
        TENSORBOARD_CLEAN=True,
        data_set=dataset,
        device=DEVICE,
        enable_progress_bar=False,
        fun_evals=FUN_EVALS,
        log_level=50,
        max_time=MAX_TIME,
        num_workers=WORKERS,
        show_progress=True,
        test_size=TEST_SIZE,
        tolerance_x=np.sqrt(np.spacing(1)),
        )
    from spotPython.light.regression.netlightregression import NetLightRegression
    from spotPython.hyperdict.light_hyper_dict import LightHyperDict
    from spotPython.hyperparameters.values import add_core_model_to_fun_control
    add_core_model_to_fun_control(fun_control=fun_control,
                                core_model=NetLightRegression,
                                hyper_dict=LightHyperDict)
    from spotPython.hyperparameters.values import set_control_hyperparameter_value
    set_control_hyperparameter_value(fun_control, "l1", [7, 8])
    set_control_hyperparameter_value(fun_control, "epochs", [3, 5])
    set_control_hyperparameter_value(fun_control, "batch_size", [4, 5])
    set_control_hyperparameter_value(fun_control, "optimizer", [
                    "Adam",
                    "RAdam",
                ])
    set_control_hyperparameter_value(fun_control, "dropout_prob", [0.01, 0.1])
    set_control_hyperparameter_value(fun_control, "lr_mult", [0.5, 5.0])
    set_control_hyperparameter_value(fun_control, "patience", [2, 3])
    set_control_hyperparameter_value(fun_control, "act_fn",[
                    "ReLU",
                    "LeakyReLU"
                ] )
    from spotPython.utils.init import design_control_init, surrogate_control_init
    design_control = design_control_init(init_size=INIT_SIZE)
    surrogate_control = surrogate_control_init(noise=True,
                                                n_theta=2)
    from spotPython.fun.hyperlight import HyperLight
    fun = HyperLight(log_level=50).fun
    from spotPython.spot import spot
    spot_tuner = spot.Spot(fun=fun,
                        fun_control=fun_control,
                        design_control=design_control,
                        surrogate_control=surrogate_control)
    spot_tuner.run()
    spot_tuner.get_tuned_hyperparameters()
        {'l1': 7.0,
        'epochs': 5.0,
        'batch_size': 4.0,
        'act_fn': 0.0,
        'optimizer': 0.0,
        'dropout_prob': 0.01,
        'lr_mult': 5.0,
        'patience': 3.0,
        'initialization': 1.0}
Source code in spotPython/spot/spot.py
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
def get_tuned_hyperparameters(self, fun_control=None) -> dict:
    """Return the tuned hyperparameter values from the run.
    If `noise == True`, the mean values are returned.

    Args:
        fun_control (dict, optional):
            fun_control dictionary

    Returns:
        (dict): dictionary of tuned hyperparameters.

    Examples:
        >>> from spotPython.utils.device import getDevice
            from math import inf
            from spotPython.utils.init import fun_control_init
            import numpy as np
            from spotPython.hyperparameters.values import set_control_key_value
            from spotPython.data.diabetes import Diabetes
            MAX_TIME = 1
            FUN_EVALS = 10
            INIT_SIZE = 5
            WORKERS = 0
            PREFIX="037"
            DEVICE = getDevice()
            DEVICES = 1
            TEST_SIZE = 0.4
            TORCH_METRIC = "mean_squared_error"
            dataset = Diabetes()
            fun_control = fun_control_init(
                _L_in=10,
                _L_out=1,
                _torchmetric=TORCH_METRIC,
                PREFIX=PREFIX,
                TENSORBOARD_CLEAN=True,
                data_set=dataset,
                device=DEVICE,
                enable_progress_bar=False,
                fun_evals=FUN_EVALS,
                log_level=50,
                max_time=MAX_TIME,
                num_workers=WORKERS,
                show_progress=True,
                test_size=TEST_SIZE,
                tolerance_x=np.sqrt(np.spacing(1)),
                )
            from spotPython.light.regression.netlightregression import NetLightRegression
            from spotPython.hyperdict.light_hyper_dict import LightHyperDict
            from spotPython.hyperparameters.values import add_core_model_to_fun_control
            add_core_model_to_fun_control(fun_control=fun_control,
                                        core_model=NetLightRegression,
                                        hyper_dict=LightHyperDict)
            from spotPython.hyperparameters.values import set_control_hyperparameter_value
            set_control_hyperparameter_value(fun_control, "l1", [7, 8])
            set_control_hyperparameter_value(fun_control, "epochs", [3, 5])
            set_control_hyperparameter_value(fun_control, "batch_size", [4, 5])
            set_control_hyperparameter_value(fun_control, "optimizer", [
                            "Adam",
                            "RAdam",
                        ])
            set_control_hyperparameter_value(fun_control, "dropout_prob", [0.01, 0.1])
            set_control_hyperparameter_value(fun_control, "lr_mult", [0.5, 5.0])
            set_control_hyperparameter_value(fun_control, "patience", [2, 3])
            set_control_hyperparameter_value(fun_control, "act_fn",[
                            "ReLU",
                            "LeakyReLU"
                        ] )
            from spotPython.utils.init import design_control_init, surrogate_control_init
            design_control = design_control_init(init_size=INIT_SIZE)
            surrogate_control = surrogate_control_init(noise=True,
                                                        n_theta=2)
            from spotPython.fun.hyperlight import HyperLight
            fun = HyperLight(log_level=50).fun
            from spotPython.spot import spot
            spot_tuner = spot.Spot(fun=fun,
                                fun_control=fun_control,
                                design_control=design_control,
                                surrogate_control=surrogate_control)
            spot_tuner.run()
            spot_tuner.get_tuned_hyperparameters()
                {'l1': 7.0,
                'epochs': 5.0,
                'batch_size': 4.0,
                'act_fn': 0.0,
                'optimizer': 0.0,
                'dropout_prob': 0.01,
                'lr_mult': 5.0,
                'patience': 3.0,
                'initialization': 1.0}

    """
    output = []
    if self.noise:
        res = self.to_all_dim(self.min_mean_X.reshape(1, -1))
    else:
        res = self.to_all_dim(self.min_X.reshape(1, -1))
    for i in range(res.shape[1]):
        if self.all_var_name is None:
            var_name = "x" + str(i)
        else:
            var_name = self.all_var_name[i]
            var_type = self.all_var_type[i]
            if var_type == "factor" and fun_control is not None:
                val = get_ith_hyperparameter_name_from_fun_control(
                    fun_control=fun_control, key=var_name, i=int(res[0][i])
                )
            else:
                val = res[0][i]
        output.append([var_name, val])
    # convert list to a dictionary
    output = dict(output)
    return output

infill(x)

Infill (acquisition) function. Evaluates one point on the surrogate via surrogate.predict(x.reshape(1,-1)), if sklearn surrogates are used or surrogate.predict(x.reshape(1,-1), return_val=self.infill_criterion) if the internal surrogate kriging is selected. This method is passed to the optimizer in suggest_new_X, i.e., the optimizer is called via self.optimizer(func=self.infill).

Parameters:

Name Type Description Default
x array

point in natural units with shape (1, dim).

required

Returns:

Type Description
ndarray

value based on infill criterion, e.g., "ei". Shape (1,). The objective function value y that is used as a base value for the infill criterion is calculated in natural units.

Note

This is step (S-12) in [bart21i].

Source code in spotPython/spot/spot.py
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
def infill(self, x) -> float:
    """
    Infill (acquisition) function. Evaluates one point on the surrogate via `surrogate.predict(x.reshape(1,-1))`,
    if `sklearn` surrogates are used or `surrogate.predict(x.reshape(1,-1), return_val=self.infill_criterion)`
    if the internal surrogate `kriging` is selected.
    This method is passed to the optimizer in `suggest_new_X`, i.e., the optimizer is called via
    `self.optimizer(func=self.infill)`.

    Args:
        x (array): point in natural units with shape `(1, dim)`.

    Returns:
        (numpy.ndarray): value based on infill criterion, e.g., `"ei"`. Shape `(1,)`.
            The objective function value `y` that is used as a base value for the
            infill criterion is calculated in natural units.

    Note:
        This is step (S-12) in [bart21i].
    """
    # Reshape x to have shape (1, -1) because the predict method expects a 2D array
    X = x.reshape(1, -1)
    if isinstance(self.surrogate, Kriging):
        return self.surrogate.predict(X, return_val=self.infill_criterion)
    else:
        return self.surrogate.predict(X)

initialize_design(X_start=None)

Initialize design. Generate and evaluate initial design. If X_start is not None, append it to the initial design. Therefore, the design size is init_size + X_start.shape[0].

Parameters:

Name Type Description Default
self object

Spot object

required
X_start ndarray

initial design. Defaults to None.

None

Returns:

Type Description
NoneType

None

Attributes:

Name Type Description
self.X ndarray

initial design

self.y ndarray

initial design values

Note
  • If X_start is has the wrong shape, it is ignored.

Examples:

>>> import numpy as np
    from spotPython.fun.objectivefunctions import analytical
    from spotPython.spot import spot
    from spotPython.utils.init import (
        fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
        )
    # number of initial points:
    ni = 7
    # start point X_0
    X_start = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
    fun = analytical().fun_sphere
    fun_control = fun_control_init(
        lower = np.array([-1, -1]),
        upper = np.array([1, 1]))
    design_control=design_control_init(init_size=ni)
    S = spot.Spot(fun=fun,
                fun_control=fun_control,
                design_control=design_control,)
    S.initialize_design(X_start=X_start)
    print(f"S.X: {S.X}")
    print(f"S.y: {S.y}")
Source code in spotPython/spot/spot.py
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
def initialize_design(self, X_start=None) -> None:
    """
    Initialize design. Generate and evaluate initial design.
    If `X_start` is not `None`, append it to the initial design.
    Therefore, the design size is `init_size` + `X_start.shape[0]`.

    Args:
        self (object): Spot object
        X_start (numpy.ndarray, optional): initial design. Defaults to None.

    Returns:
        (NoneType): None

    Attributes:
        self.X (numpy.ndarray): initial design
        self.y (numpy.ndarray): initial design values

    Note:
        * If `X_start` is has the wrong shape, it is ignored.

    Examples:
        >>> import numpy as np
            from spotPython.fun.objectivefunctions import analytical
            from spotPython.spot import spot
            from spotPython.utils.init import (
                fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                )
            # number of initial points:
            ni = 7
            # start point X_0
            X_start = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
            fun = analytical().fun_sphere
            fun_control = fun_control_init(
                lower = np.array([-1, -1]),
                upper = np.array([1, 1]))
            design_control=design_control_init(init_size=ni)
            S = spot.Spot(fun=fun,
                        fun_control=fun_control,
                        design_control=design_control,)
            S.initialize_design(X_start=X_start)
            print(f"S.X: {S.X}")
            print(f"S.y: {S.y}")
    """
    if self.design_control["init_size"] > 0:
        X0 = self.generate_design(
            size=self.design_control["init_size"],
            repeats=self.design_control["repeats"],
            lower=self.lower,
            upper=self.upper,
        )
    if X_start is not None:
        if not isinstance(X_start, np.ndarray):
            X_start = np.array(X_start)
        X_start = np.atleast_2d(X_start)
        try:
            if self.design_control["init_size"] > 0:
                X0 = append(X_start, X0, axis=0)
            else:
                X0 = X_start
        except ValueError:
            logger.warning("X_start has wrong shape. Ignoring it.")
    if X0.shape[0] == 0:
        raise Exception("X0 has zero rows. Check design_control['init_size'] or X_start.")
    X0 = repair_non_numeric(X0, self.var_type)
    self.X = X0
    # (S-3): Eval initial design:
    X_all = self.to_all_dim_if_needed(X0)
    logger.debug("In Spot() initialize_design(), before calling self.fun: X_all: %s", X_all)
    logger.debug("In Spot() initialize_design(), before calling self.fun: fun_control: %s", self.fun_control)
    self.y = self.fun(X=X_all, fun_control=self.fun_control)
    logger.debug("In Spot() initialize_design(), after calling self.fun: self.y: %s", self.y)
    # TODO: Error if only nan values are returned
    logger.debug("New y value: %s", self.y)
    #
    self.counter = self.y.size
    if self.spot_writer is not None:
        writer = self.spot_writer
        # range goes to init_size -1 because the last value is added by update_stats(),
        # which always adds the last value.
        # Changed in 0.5.9:
        for j in range(len(self.y)):
            X_j = self.X[j].copy()
            y_j = self.y[j].copy()
            config = {self.var_name[i]: X_j[i] for i in range(self.k)}
            writer.add_hparams(config, {"spot_y": y_j})
            writer.flush()
    #
    self.X, self.y = remove_nan(self.X, self.y)
    logger.debug("In Spot() initialize_design(), final X val, after remove nan: self.X: %s", self.X)
    logger.debug("In Spot() initialize_design(), final y val, after remove nan: self.y: %s", self.y)

parallel_plot(show=False)

Parallel plot.

Parameters:

Name Type Description Default
self object

Spot object

required
show bool

show the plot. Default is False.

False

Returns:

Name Type Description
fig Figure

figure object

Examples:

>>> import numpy as np
    from spotPython.fun.objectivefunctions import analytical
    from spotPython.spot import spot
    from spotPython.utils.init import (
        fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
        )
    # number of initial points:
    ni = 5
    # number of points
    fun_evals = 10
    fun = analytical().fun_sphere
    fun_control = fun_control_init(
        lower = np.array([-1, -1, -1]),
        upper = np.array([1, 1, 1]),
        fun_evals=fun_evals,
        tolerance_x = np.sqrt(np.spacing(1))
        )
    design_control=design_control_init(init_size=ni)
    surrogate_control=surrogate_control_init(n_theta=3)
    S = spot.Spot(fun=fun,
                fun_control=fun_control,
                design_control=design_control,
                surrogate_control=surrogate_control,)
    S.run()
    S.parallel_plot()
Source code in spotPython/spot/spot.py
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
def parallel_plot(self, show=False) -> go.Figure:
    """
    Parallel plot.

    Args:
        self (object):
            Spot object
        show (bool):
            show the plot. Default is `False`.

    Returns:
            fig (plotly.graph_objects.Figure): figure object

    Examples:
        >>> import numpy as np
            from spotPython.fun.objectivefunctions import analytical
            from spotPython.spot import spot
            from spotPython.utils.init import (
                fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                )
            # number of initial points:
            ni = 5
            # number of points
            fun_evals = 10
            fun = analytical().fun_sphere
            fun_control = fun_control_init(
                lower = np.array([-1, -1, -1]),
                upper = np.array([1, 1, 1]),
                fun_evals=fun_evals,
                tolerance_x = np.sqrt(np.spacing(1))
                )
            design_control=design_control_init(init_size=ni)
            surrogate_control=surrogate_control_init(n_theta=3)
            S = spot.Spot(fun=fun,
                        fun_control=fun_control,
                        design_control=design_control,
                        surrogate_control=surrogate_control,)
            S.run()
            S.parallel_plot()

    """
    X = self.X
    y = self.y
    df = pd.DataFrame(np.concatenate((X, y.reshape(-1, 1)), axis=1), columns=self.var_name + ["y"])

    fig = go.Figure(
        data=go.Parcoords(
            line=dict(color=df["y"], colorscale="Jet", showscale=True, cmin=min(df["y"]), cmax=max(df["y"])),
            dimensions=list(
                [
                    dict(range=[min(df.iloc[:, i]), max(df.iloc[:, i])], label=df.columns[i], values=df.iloc[:, i])
                    for i in range(len(df.columns) - 1)
                ]
            ),
        )
    )
    if show:
        fig.show()
    return fig

plot_contour(i=0, j=1, min_z=None, max_z=None, show=True, filename=None, n_grid=25, contour_levels=10, dpi=200, title='')

Plot the contour of any dimension.

Parameters:

Name Type Description Default
i int

the first dimension

0
j int

the second dimension

1
min_z float

the minimum value of z

None
max_z float

the maximum value of z

None
show bool

show the plot

True
filename str

save the plot to a file

None
n_grid int

number of grid points

25
contour_levels int

number of contour levels

10
dpi int

dpi of the plot. Default is 200.

200
title str

title of the plot

''

Returns:

Type Description
None

None

Examples:

>>> import numpy as np
    from spotPython.fun.objectivefunctions import analytical
    from spotPython.spot import spot
    from spotPython.utils.init import (
        fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
        )
    # number of initial points:
    ni = 5
    # number of points
    fun_evals = 10
    fun = analytical().fun_sphere
    fun_control = fun_control_init(
        lower = np.array([-1, -1, -1]),
        upper = np.array([1, 1, 1]),
        fun_evals=fun_evals,
        tolerance_x = np.sqrt(np.spacing(1))
        )
    design_control=design_control_init(init_size=ni)
    surrogate_control=surrogate_control_init(n_theta=3)
    S = spot.Spot(fun=fun,
                fun_control=fun_control,
                design_control=design_control,
                surrogate_control=surrogate_control,)
    S.run()
    S.plot_important_hyperparameter_contour()
Source code in spotPython/spot/spot.py
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
def plot_contour(
    self,
    i=0,
    j=1,
    min_z=None,
    max_z=None,
    show=True,
    filename=None,
    n_grid=25,
    contour_levels=10,
    dpi=200,
    title="",
) -> None:
    """Plot the contour of any dimension.

    Args:
        i (int):
            the first dimension
        j (int):
            the second dimension
        min_z (float):
            the minimum value of z
        max_z (float):
            the maximum value of z
        show (bool):
            show the plot
        filename (str):
            save the plot to a file
        n_grid (int):
            number of grid points
        contour_levels (int):
            number of contour levels
        dpi (int):
            dpi of the plot. Default is 200.
        title (str):
            title of the plot

    Returns:
        None

    Examples:
        >>> import numpy as np
            from spotPython.fun.objectivefunctions import analytical
            from spotPython.spot import spot
            from spotPython.utils.init import (
                fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                )
            # number of initial points:
            ni = 5
            # number of points
            fun_evals = 10
            fun = analytical().fun_sphere
            fun_control = fun_control_init(
                lower = np.array([-1, -1, -1]),
                upper = np.array([1, 1, 1]),
                fun_evals=fun_evals,
                tolerance_x = np.sqrt(np.spacing(1))
                )
            design_control=design_control_init(init_size=ni)
            surrogate_control=surrogate_control_init(n_theta=3)
            S = spot.Spot(fun=fun,
                        fun_control=fun_control,
                        design_control=design_control,
                        surrogate_control=surrogate_control,)
            S.run()
            S.plot_important_hyperparameter_contour()
    """
    fig = pylab.figure(figsize=(9, 6))
    # lower and upper
    x = np.linspace(self.lower[i], self.upper[i], num=n_grid)
    y = np.linspace(self.lower[j], self.upper[j], num=n_grid)
    X, Y = meshgrid(x, y)
    # generate a numpy array with the X and Y values
    z0 = np.mean(np.array([self.lower, self.upper]), axis=0)
    # Predict based on the optimized results
    zz = array([self.surrogate.predict(array([self.chg(x, y, z0, i, j)])) for x, y in zip(ravel(X), ravel(Y))])
    zs = zz[:, 0]
    Z = zs.reshape(X.shape)
    if min_z is None:
        min_z = np.min(Z)
    if max_z is None:
        max_z = np.max(Z)
    ax = fig.add_subplot(221)
    # plot predicted values:
    plt.contourf(X, Y, Z, contour_levels, zorder=1, cmap="jet", vmin=min_z, vmax=max_z)
    if self.var_name is None:
        plt.xlabel("x" + str(i))
        plt.ylabel("x" + str(j))
    else:
        plt.xlabel("x" + str(i) + ": " + self.var_name[i])
        plt.ylabel("x" + str(j) + ": " + self.var_name[j])
    # plt.title("Surrogate")
    pylab.colorbar()
    ax = fig.add_subplot(222, projection="3d")
    ax.plot_surface(X, Y, Z, rstride=3, cstride=3, alpha=0.9, cmap="jet", vmin=min_z, vmax=max_z)
    if self.var_name is None:
        plt.xlabel("x" + str(i))
        plt.ylabel("x" + str(j))
    else:
        plt.xlabel("x" + str(i) + ": " + self.var_name[i])
        plt.ylabel("x" + str(j) + ": " + self.var_name[j])
    plt.title(title)
    if filename:
        pylab.savefig(filename, bbox_inches="tight", dpi=dpi, pad_inches=0),
    if show:
        pylab.show()

plot_importance(threshold=0.1, filename=None, dpi=300, show=True)

Plot the importance of each variable.

Parameters:

Name Type Description Default
threshold float

The threshold of the importance.

0.1
filename str

The filename of the plot.

None
dpi int

The dpi of the plot.

300
show bool

Show the plot. Default is True.

True

Returns:

Type Description
None

None

Source code in spotPython/spot/spot.py
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
def plot_importance(self, threshold=0.1, filename=None, dpi=300, show=True) -> None:
    """Plot the importance of each variable.

    Args:
        threshold (float):
            The threshold of the importance.
        filename (str):
            The filename of the plot.
        dpi (int):
            The dpi of the plot.
        show (bool):
            Show the plot. Default is `True`.

    Returns:
        None
    """
    if self.surrogate.n_theta > 1:
        theta = np.power(10, self.surrogate.theta)
        imp = 100 * theta / np.max(theta)
        idx = np.where(imp > threshold)[0]
        if self.var_name is None:
            plt.bar(range(len(imp[idx])), imp[idx])
            plt.xticks(range(len(imp[idx])), ["x" + str(i) for i in idx])
        else:
            var_name = [self.var_name[i] for i in idx]
            plt.bar(range(len(imp[idx])), imp[idx])
            plt.xticks(range(len(imp[idx])), var_name)
        if filename is not None:
            plt.savefig(filename, bbox_inches="tight", dpi=dpi)
        if show:
            plt.show()

plot_important_hyperparameter_contour(threshold=0.0, filename=None, show=True, max_imp=None, title='', scale_global=False)

Plot the contour of important hyperparameters. Calls plot_contour for each pair of important hyperparameters. Importance can be specified by the threshold.

Parameters:

Name Type Description Default
threshold float

threshold for the importance. Not used any more in spotPython >= 0.13.2.

0.0
filename str

filename of the plot

None
show bool

show the plot. Default is True.

True
max_imp int

maximum number of important hyperparameters. If there are more important hyperparameters than max_imp, only the max_imp important ones are selected.

None
title str

title of the plots

''

Returns:

Type Description
None

None.

Examples:

>>> import numpy as np
    from spotPython.fun.objectivefunctions import analytical
    from spotPython.spot import spot
    from spotPython.utils.init import (
        fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
        )
    # number of initial points:
    ni = 5
    # number of points
    fun_evals = 10
    fun = analytical().fun_sphere
    fun_control = fun_control_init(
        lower = np.array([-1, -1, -1]),
        upper = np.array([1, 1, 1]),
        fun_evals=fun_evals,
        tolerance_x = np.sqrt(np.spacing(1))
        )
    design_control=design_control_init(init_size=ni)
    surrogate_control=surrogate_control_init(n_theta=3)
    S = spot.Spot(fun=fun,
                fun_control=fun_control,
                design_control=design_control,
                surrogate_control=surrogate_control,)
    S.run()
    S.plot_important_hyperparameter_contour()
Source code in spotPython/spot/spot.py
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
def plot_important_hyperparameter_contour(
    self, threshold=0.0, filename=None, show=True, max_imp=None, title="", scale_global=False
) -> None:
    """
    Plot the contour of important hyperparameters.
    Calls `plot_contour` for each pair of important hyperparameters.
    Importance can be specified by the threshold.

    Args:
        threshold (float):
            threshold for the importance. Not used any more in spotPython >= 0.13.2.
        filename (str):
            filename of the plot
        show (bool):
            show the plot. Default is `True`.
        max_imp (int):
            maximum number of important hyperparameters. If there are more important hyperparameters
            than `max_imp`, only the max_imp important ones are selected.
        title (str):
            title of the plots

    Returns:
        None.

    Examples:
        >>> import numpy as np
            from spotPython.fun.objectivefunctions import analytical
            from spotPython.spot import spot
            from spotPython.utils.init import (
                fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                )
            # number of initial points:
            ni = 5
            # number of points
            fun_evals = 10
            fun = analytical().fun_sphere
            fun_control = fun_control_init(
                lower = np.array([-1, -1, -1]),
                upper = np.array([1, 1, 1]),
                fun_evals=fun_evals,
                tolerance_x = np.sqrt(np.spacing(1))
                )
            design_control=design_control_init(init_size=ni)
            surrogate_control=surrogate_control_init(n_theta=3)
            S = spot.Spot(fun=fun,
                        fun_control=fun_control,
                        design_control=design_control,
                        surrogate_control=surrogate_control,)
            S.run()
            S.plot_important_hyperparameter_contour()

    """
    impo = self.print_importance(threshold=threshold, print_screen=True)
    print(f"impo: {impo}")
    indices = sort_by_kth_and_return_indices(array=impo, k=1)
    print(f"indices: {indices}")
    # take the first max_imp values from the indices array
    if max_imp is not None:
        indices = indices[:max_imp]
    print(f"indices after max_imp selection: {indices}")
    if scale_global:
        min_z = min(self.y)
        max_z = max(self.y)
    else:
        min_z = None
        max_z = None
    for i in indices:
        for j in indices:
            if j > i:
                if filename is not None:
                    filename_full = filename + "_contour_" + str(i) + "_" + str(j) + ".png"
                else:
                    filename_full = None
                self.plot_contour(
                    i=i, j=j, min_z=min_z, max_z=max_z, filename=filename_full, show=show, title=title
                )

plot_model(y_min=None, y_max=None)

Plot the model fit for 1-dim objective functions.

Parameters:

Name Type Description Default
self object

spot object

required
y_min float

y range, lower bound.

None
y_max float

y range, upper bound.

None

Returns:

Type Description
None

None

Examples:

>>> import numpy as np
    from spotPython.utils.init import (
        fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
        )
    from spotPython.fun.objectivefunctions import analytical
    from spotPython.spot import spot
    # number of initial points:
    ni = 3
    # number of points
    fun_evals = 7
    fun = analytical().fun_sphere
    fun_control = fun_control_init(
        lower = np.array([-1]),
        upper = np.array([1]),
        fun_evals=fun_evals,
        tolerance_x = np.sqrt(np.spacing(1))
        )
    design_control=design_control_init(init_size=ni)
S = spot.Spot(fun=fun,
            fun_control=fun_control,
            design_control=design_control
S.run()
S.plot_model()
Source code in spotPython/spot/spot.py
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
def plot_model(self, y_min=None, y_max=None) -> None:
    """
    Plot the model fit for 1-dim objective functions.

    Args:
        self (object):
            spot object
        y_min (float, optional):
            y range, lower bound.
        y_max (float, optional):
            y range, upper bound.

    Returns:
        None

    Examples:
        >>> import numpy as np
            from spotPython.utils.init import (
                fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                )
            from spotPython.fun.objectivefunctions import analytical
            from spotPython.spot import spot
            # number of initial points:
            ni = 3
            # number of points
            fun_evals = 7
            fun = analytical().fun_sphere
            fun_control = fun_control_init(
                lower = np.array([-1]),
                upper = np.array([1]),
                fun_evals=fun_evals,
                tolerance_x = np.sqrt(np.spacing(1))
                )
            design_control=design_control_init(init_size=ni)

            S = spot.Spot(fun=fun,
                        fun_control=fun_control,
                        design_control=design_control
            S.run()
            S.plot_model()
    """
    if self.k == 1:
        X_test = np.linspace(self.lower[0], self.upper[0], 100)
        y_test = self.fun(X=X_test.reshape(-1, 1), fun_control=self.fun_control)
        if isinstance(self.surrogate, Kriging):
            y_hat = self.surrogate.predict(X_test[:, np.newaxis], return_val="y")
        else:
            y_hat = self.surrogate.predict(X_test[:, np.newaxis])
        plt.plot(X_test, y_hat, label="Model")
        plt.plot(X_test, y_test, label="True function")
        plt.scatter(self.X, self.y, edgecolor="b", s=20, label="Samples")
        plt.scatter(self.X[-1], self.y[-1], edgecolor="r", s=30, label="Last Sample")
        if self.noise:
            plt.scatter(self.min_mean_X, self.min_mean_y, edgecolor="g", s=30, label="Best Sample (mean)")
        else:
            plt.scatter(self.min_X, self.min_y, edgecolor="g", s=30, label="Best Sample")
        plt.xlabel("x")
        plt.ylabel("y")
        plt.xlim((self.lower[0], self.upper[0]))
        if y_min is None:
            y_min = min([min(self.y), min(y_test)])
        if y_max is None:
            y_max = max([max(self.y), max(y_test)])
        plt.ylim((y_min, y_max))
        plt.legend(loc="best")
        # plt.title(self.surrogate.__class__.__name__ + ". " + str(self.counter) + ": " + str(self.min_y))
        if self.noise:
            plt.title(
                "fun_evals: "
                + str(self.counter)
                + ". min_y (noise): "
                + str(np.round(self.min_y, 6))
                + " min_mean_y: "
                + str(np.round(self.min_mean_y, 6))
            )
        else:
            plt.title("fun_evals: " + str(self.counter) + ". min_y: " + str(np.round(self.min_y, 6)))
        plt.show()

plot_progress(show=True, log_x=False, log_y=False, filename='plot.png', style=['ko', 'k', 'ro-'], dpi=300)

Plot the progress of the hyperparameter tuning (optimization).

Parameters:

Name Type Description Default
show bool

Show the plot.

True
log_x bool

Use logarithmic scale for x-axis.

False
log_y bool

Use logarithmic scale for y-axis.

False
filename str

Filename to save the plot.

'plot.png'
style list

Style of the plot. Default: [‘k’, ‘ro-‘], i.e., the initial points are plotted as a black line and the subsequent points as red dots connected by a line.

['ko', 'k', 'ro-']

Returns:

Type Description
None

None

Examples:

>>> import numpy as np
    from spotPython.fun.objectivefunctions import analytical
    from spotPython.spot import spot
    from spotPython.utils.init import (
        fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
        )
    # number of initial points:
    ni = 7
    # number of points
    fun_evals = 10
    fun = analytical().fun_sphere
    fun_control = fun_control_init(
        lower = np.array([-1, -1]),
        upper = np.array([1, 1])
        fun_evals=fun_evals,
        tolerance_x = np.sqrt(np.spacing(1))
        )
    design_control=design_control_init(init_size=ni)
    surrogate_control=surrogate_control_init(n_theta=3)
    S = spot.Spot(fun=fun,
                fun_control=fun_control
                design_control=design_control,
                surrogate_control=surrogate_control,)
    S.run()
    S.plot_progress(log_y=True)
Source code in spotPython/spot/spot.py
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
def plot_progress(
    self, show=True, log_x=False, log_y=False, filename="plot.png", style=["ko", "k", "ro-"], dpi=300
) -> None:
    """Plot the progress of the hyperparameter tuning (optimization).

    Args:
        show (bool):
            Show the plot.
        log_x (bool):
            Use logarithmic scale for x-axis.
        log_y (bool):
            Use logarithmic scale for y-axis.
        filename (str):
            Filename to save the plot.
        style (list):
            Style of the plot. Default: ['k', 'ro-'], i.e., the initial points are plotted as a black line
            and the subsequent points as red dots connected by a line.

    Returns:
        None

    Examples:
        >>> import numpy as np
            from spotPython.fun.objectivefunctions import analytical
            from spotPython.spot import spot
            from spotPython.utils.init import (
                fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                )
            # number of initial points:
            ni = 7
            # number of points
            fun_evals = 10
            fun = analytical().fun_sphere
            fun_control = fun_control_init(
                lower = np.array([-1, -1]),
                upper = np.array([1, 1])
                fun_evals=fun_evals,
                tolerance_x = np.sqrt(np.spacing(1))
                )
            design_control=design_control_init(init_size=ni)
            surrogate_control=surrogate_control_init(n_theta=3)
            S = spot.Spot(fun=fun,
                        fun_control=fun_control
                        design_control=design_control,
                        surrogate_control=surrogate_control,)
            S.run()
            S.plot_progress(log_y=True)

    """
    fig = pylab.figure(figsize=(9, 6))
    s_y = pd.Series(self.y)
    s_c = s_y.cummin()
    n_init = self.design_control["init_size"] * self.design_control["repeats"]

    ax = fig.add_subplot(211)
    if n_init <= len(s_y):
        ax.plot(
            range(1, n_init + 1),
            s_y[:n_init],
            style[0],
            range(1, n_init + 2),
            [s_c[:n_init].min()] * (n_init + 1),
            style[1],
            range(n_init + 1, len(s_c) + 1),
            s_c[n_init:],
            style[2],
        )
    else:
        # plot only s_y values:
        ax.plot(range(1, len(s_y) + 1), s_y, style[0])
        logger.warning("Less evaluations ({len(s_y)}) than initial design points ({n_init}).")
    ax.set_xlabel("Iteration")
    if log_x:
        ax.set_xscale("log")
    if log_y:
        ax.set_yscale("log")
    if filename is not None:
        pylab.savefig(filename, dpi=dpi, bbox_inches="tight")
    if show:
        pylab.show()

print_importance(threshold=0.1, print_screen=True)

Print importance of each variable and return the results as a list.

Parameters:

Name Type Description Default
threshold float

threshold for printing

0.1
print_screen boolean

if True, values are also printed on the screen. Default is True.

True

Returns:

Name Type Description
output list

list of results

Source code in spotPython/spot/spot.py
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
def print_importance(self, threshold=0.1, print_screen=True) -> list:
    """Print importance of each variable and return the results as a list.

    Args:
        threshold (float):
            threshold for printing
        print_screen (boolean):
            if `True`, values are also printed on the screen. Default is `True`.

    Returns:
        output (list):
            list of results
    """
    output = []
    if self.surrogate.n_theta > 1:
        theta = np.power(10, self.surrogate.theta)
        imp = 100 * theta / np.max(theta)
        # imp = imp[imp >= threshold]
        if self.var_name is None:
            for i in range(len(imp)):
                if imp[i] >= threshold:
                    if print_screen:
                        print("x", i, ": ", imp[i])
                    output.append("x" + str(i) + ": " + str(imp[i]))
        else:
            var_name = [self.var_name[i] for i in range(len(imp))]
            for i in range(len(imp)):
                if imp[i] >= threshold:
                    if print_screen:
                        print(var_name[i] + ": ", imp[i])
                output.append([var_name[i], imp[i]])
    else:
        print("Importance requires more than one theta values (n_theta>1).")
    return output

print_results(print_screen=True, dict=None)

Parameters:

Name Type Description Default
print_screen bool

print results to screen

True

Returns:

Name Type Description
output list

list of results

Source code in spotPython/spot/spot.py
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
def print_results(self, print_screen=True, dict=None) -> list[str]:
    """Print results from the run:
        1. min y
        2. min X
        If `noise == True`, additionally the following values are printed:
        3. min mean y
        4. min mean X

    Args:
        print_screen (bool, optional):
            print results to screen

    Returns:
        output (list):
            list of results
    """
    output = []
    if print_screen:
        print(f"min y: {self.min_y}")
        if self.noise:
            print(f"min mean y: {self.min_mean_y}")
    if self.noise:
        res = self.to_all_dim(self.min_mean_X.reshape(1, -1))
    else:
        res = self.to_all_dim(self.min_X.reshape(1, -1))
    for i in range(res.shape[1]):
        if self.all_var_name is None:
            var_name = "x" + str(i)
        else:
            var_name = self.all_var_name[i]
            var_type = self.all_var_type[i]
            if var_type == "factor" and dict is not None:
                val = get_ith_hyperparameter_name_from_fun_control(fun_control=dict, key=var_name, i=int(res[0][i]))
            else:
                val = res[0][i]
        if print_screen:
            print(var_name + ":", val)
        output.append([var_name, val])
    return output

print_results_old(print_screen=True, dict=None)

Parameters:

Name Type Description Default
print_screen bool

print results to screen

True

Returns:

Name Type Description
output list

list of results

Source code in spotPython/spot/spot.py
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
def print_results_old(self, print_screen=True, dict=None) -> list[str]:
    """Print results from the run:
        1. min y
        2. min X
        If `noise == True`, additionally the following values are printed:
        3. min mean y
        4. min mean X

    Args:
        print_screen (bool, optional):
            print results to screen

    Returns:
        output (list):
            list of results
    """
    output = []
    if print_screen:
        print(f"min y: {self.min_y}")
    res = self.to_all_dim(self.min_X.reshape(1, -1))
    for i in range(res.shape[1]):
        if self.all_var_name is None:
            var_name = "x" + str(i)
        else:
            var_name = self.all_var_name[i]
            var_type = self.all_var_type[i]
            if var_type == "factor" and dict is not None:
                val = get_ith_hyperparameter_name_from_fun_control(fun_control=dict, key=var_name, i=int(res[0][i]))
            else:
                val = res[0][i]
        if print_screen:
            print(var_name + ":", val)
        output.append([var_name, val])
    if self.noise:
        res = self.to_all_dim(self.min_mean_X.reshape(1, -1))
        if print_screen:
            print(f"min mean y: {self.min_mean_y}")
        for i in range(res.shape[1]):
            var_name = "x" + str(i) if self.all_var_name is None else self.all_var_name[i]
            if print_screen:
                print(var_name + ":", res[0][i])
            output.append([var_name, res[0][i]])
    return output

save_experiment(filename=None)

Save the experiment to a file.

Source code in spotPython/spot/spot.py
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
def save_experiment(self, filename=None) -> None:
    """
    Save the experiment to a file.
    """
    design_control = copy.deepcopy(self.design_control)
    fun_control = copy.deepcopy(self.fun_control)
    optimizer_control = copy.deepcopy(self.optimizer_control)
    spot_tuner = copy.deepcopy(self)
    surrogate_control = copy.deepcopy(self.surrogate_control)

    # remove the key "spot_writer" from the fun_control dictionary,
    # because it is not serializable.
    # TODO: It will be re-added when the experiment is loaded.
    fun_control.pop("spot_writer", None)
    experiment = {
        "design_control": design_control,
        "fun_control": fun_control,
        "optimizer_control": optimizer_control,
        "spot_tuner": spot_tuner,
        "surrogate_control": surrogate_control,
    }
    # check if the key "spot_writer" is in the fun_control dictionary
    if "spot_writer" in fun_control and fun_control["spot_writer"] is not None:
        fun_control["spot_writer"].close()
    PREFIX = fun_control["PREFIX"]
    if filename is None and PREFIX is not None:
        filename = get_experiment_filename(PREFIX)
    if filename is not None:
        with open(filename, "wb") as handle:
            pickle.dump(experiment, handle, protocol=pickle.HIGHEST_PROTOCOL)

set_self_attribute(attribute, value, dict)

This function sets the attribute of the ‘self’ object to the provided value. If the key exists in the provided dictionary, it updates the attribute with the value from the dictionary.

Parameters:

Name Type Description Default
self object

the object whose attribute is to be set

required
attribute str

the attribute to set

required
value Any

the value to set the attribute to

required
dict dict

the dictionary to check for the key

required
Source code in spotPython/spot/spot.py
356
357
358
359
360
361
362
363
364
365
366
367
368
369
def set_self_attribute(self, attribute, value, dict):
    """
    This function sets the attribute of the 'self' object to the provided value.
    If the key exists in the provided dictionary, it updates the attribute with the value from the dictionary.

    Args:
        self (object): the object whose attribute is to be set
        attribute (str): the attribute to set
        value (Any): the value to set the attribute to
        dict (dict): the dictionary to check for the key
    """
    setattr(self, attribute, value)
    if get_control_key_value(control_dict=dict, key=attribute) is not None:
        setattr(self, attribute, get_control_key_value(control_dict=dict, key=attribute))

show_progress_if_needed(timeout_start)

Show progress bar if show_progress is True. If self.progress_file is not None, the progress bar is saved in the file with the name self.progress_file.

Parameters:

Name Type Description Default
self object

Spot object

required
timeout_start float

start time

required

Returns:

Type Description
NoneType

None

Source code in spotPython/spot/spot.py
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
def show_progress_if_needed(self, timeout_start) -> None:
    """Show progress bar if `show_progress` is `True`. If
    self.progress_file is not `None`, the progress bar is saved
    in the file with the name `self.progress_file`.

    Args:
        self (object): Spot object
        timeout_start (float): start time

    Returns:
        (NoneType): None
    """
    if not self.show_progress:
        return
    if isfinite(self.fun_evals):
        progress_bar(progress=self.counter / self.fun_evals, y=self.min_y, filename=self.progress_file)
    else:
        progress_bar(
            progress=(time.time() - timeout_start) / (self.max_time * 60), y=self.min_y, filename=self.progress_file
        )

suggest_new_X()

Compute n_points new infill points in natural units. These diffrent points are computed by the optimizer using increasing seed. The optimizer searches in the ranges from lower_j to upper_j. The method infill() is used as the objective function.

Returns:

Type Description
ndarray

n_points infill points in natural units, each of dim k

Note

This is step (S-14a) in [bart21i].

Examples:

>>> import numpy as np
    from spotPython.spot import spot
    from spotPython.fun.objectivefunctions import analytical
    from spotPython.utils.init import (
        fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
        )
    nn = 3
    fun_sphere = analytical().fun_sphere
    fun_control = fun_control_init(
            lower = np.array([-1, -1]),
            upper = np.array([1, 1]),
            n_points=nn,
            )
    spot_1 = spot.Spot(
        fun=fun_sphere,
        fun_control=fun_control,
        )
    # (S-2) Initial Design:
    spot_1.X = spot_1.design.scipy_lhd(
        spot_1.design_control["init_size"], lower=spot_1.lower, upper=spot_1.upper
    )
    print(f"spot_1.X: {spot_1.X}")
    # (S-3): Eval initial design:
    spot_1.y = spot_1.fun(spot_1.X)
    print(f"spot_1.y: {spot_1.y}")
    spot_1.fit_surrogate()
    X0 = spot_1.suggest_new_X()
    print(f"X0: {X0}")
    assert X0.size == spot_1.n_points * spot_1.k
    assert X0.ndim == 2
    assert X0.shape[0] == nn
    assert X0.shape[1] == 2
    spot_1.X: [[ 0.86352963  0.7892358 ]
                [-0.24407197 -0.83687436]
                [ 0.36481882  0.8375811 ]
                [ 0.415331    0.54468512]
                [-0.56395091 -0.77797854]
                [-0.90259409 -0.04899292]
                [-0.16484832  0.35724741]
                [ 0.05170659  0.07401196]
                [-0.78548145 -0.44638164]
                [ 0.64017497 -0.30363301]]
    spot_1.y: [1.36857656 0.75992983 0.83463487 0.46918172 0.92329124 0.8170764
    0.15480068 0.00815134 0.81623768 0.502017  ]
    X0: [[0.00154544 0.003962  ]
        [0.00165526 0.00410847]
        [0.00165685 0.0039177 ]]
Source code in spotPython/spot/spot.py
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
def suggest_new_X(self) -> np.array:
    """
    Compute `n_points` new infill points in natural units.
    These diffrent points are computed by the optimizer using increasing seed.
    The optimizer searches in the ranges from `lower_j` to `upper_j`.
    The method `infill()` is used as the objective function.

    Returns:
        (numpy.ndarray): `n_points` infill points in natural units, each of dim k

    Note:
        This is step (S-14a) in [bart21i].

    Examples:
        >>> import numpy as np
            from spotPython.spot import spot
            from spotPython.fun.objectivefunctions import analytical
            from spotPython.utils.init import (
                fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                )
            nn = 3
            fun_sphere = analytical().fun_sphere
            fun_control = fun_control_init(
                    lower = np.array([-1, -1]),
                    upper = np.array([1, 1]),
                    n_points=nn,
                    )
            spot_1 = spot.Spot(
                fun=fun_sphere,
                fun_control=fun_control,
                )
            # (S-2) Initial Design:
            spot_1.X = spot_1.design.scipy_lhd(
                spot_1.design_control["init_size"], lower=spot_1.lower, upper=spot_1.upper
            )
            print(f"spot_1.X: {spot_1.X}")
            # (S-3): Eval initial design:
            spot_1.y = spot_1.fun(spot_1.X)
            print(f"spot_1.y: {spot_1.y}")
            spot_1.fit_surrogate()
            X0 = spot_1.suggest_new_X()
            print(f"X0: {X0}")
            assert X0.size == spot_1.n_points * spot_1.k
            assert X0.ndim == 2
            assert X0.shape[0] == nn
            assert X0.shape[1] == 2
            spot_1.X: [[ 0.86352963  0.7892358 ]
                        [-0.24407197 -0.83687436]
                        [ 0.36481882  0.8375811 ]
                        [ 0.415331    0.54468512]
                        [-0.56395091 -0.77797854]
                        [-0.90259409 -0.04899292]
                        [-0.16484832  0.35724741]
                        [ 0.05170659  0.07401196]
                        [-0.78548145 -0.44638164]
                        [ 0.64017497 -0.30363301]]
            spot_1.y: [1.36857656 0.75992983 0.83463487 0.46918172 0.92329124 0.8170764
            0.15480068 0.00815134 0.81623768 0.502017  ]
            X0: [[0.00154544 0.003962  ]
                [0.00165526 0.00410847]
                [0.00165685 0.0039177 ]]
    """
    # (S-14a) Optimization on the surrogate:
    new_X = np.zeros([self.n_points, self.k], dtype=float)
    optimizer_name = self.optimizer.__name__
    optimizers = {
        "dual_annealing": lambda: self.optimizer(func=self.infill, bounds=self.de_bounds),
        "differential_evolution": lambda: self.optimizer(
            func=self.infill,
            bounds=self.de_bounds,
            maxiter=self.optimizer_control["max_iter"],
            seed=self.optimizer_control["seed"],
        ),
        "direct": lambda: self.optimizer(func=self.infill, bounds=self.de_bounds, eps=1e-2),
        "shgo": lambda: self.optimizer(func=self.infill, bounds=self.de_bounds),
        "basinhopping": lambda: self.optimizer(func=self.infill, x0=self.min_X),
        "default": lambda: self.optimizer(func=self.infill, bounds=self.de_bounds),
    }
    for i in range(self.n_points):
        self.optimizer_control["seed"] = self.optimizer_control["seed"] + i
        result = optimizers.get(optimizer_name, optimizers["default"])()
        new_X[i][:] = result.x
    return np.unique(new_X, axis=0)

to_red_dim()

Reduce dimension if lower == upper. This is done by removing the corresponding entries from lower, upper, var_type, and var_name. k is modified accordingly.

Parameters:

Name Type Description Default
self object

Spot object

required

Returns:

Type Description
NoneType

None

Attributes:

Name Type Description
self.lower ndarray

lower bound

self.upper ndarray

upper bound

self.var_type List[str]

list of variable types

Examples:

>>> import numpy as np
    from spotPython.fun.objectivefunctions import analytical
    from spotPython.spot import spot
                    from spotPython.utils.init import (
        fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
        )
    # number of initial points:
    ni = 3
    # number of points
    n = 10
    fun = analytical().fun_sphere
    fun_control = fun_control_init(
        lower = np.array([-1, -1]),
        upper = np.array([1, 1]),
        fun_evals = n)
    design_control=design_control_init(init_size=ni)
    spot_1 = spot.Spot(fun=fun,
                fun_control=fun_control,
                design_control=design_control,)
    spot_1.run()
    assert spot_1.lower.size == 2
    assert spot_1.upper.size == 2
    assert len(spot_1.var_type) == 2
    assert spot_1.red_dim == False
    spot_1.lower = np.array([-1, -1])
    spot_1.upper = np.array([-1, -1])
    spot_1.to_red_dim()
    assert spot_1.lower.size == 0
    assert spot_1.upper.size == 0
    assert len(spot_1.var_type) == 0
    assert spot_1.red_dim == True
Source code in spotPython/spot/spot.py
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
def to_red_dim(self) -> None:
    """
    Reduce dimension if lower == upper.
    This is done by removing the corresponding entries from
    lower, upper, var_type, and var_name.
    k is modified accordingly.

    Args:
        self (object): Spot object

    Returns:
        (NoneType): None

    Attributes:
        self.lower (numpy.ndarray): lower bound
        self.upper (numpy.ndarray): upper bound
        self.var_type (List[str]): list of variable types

    Examples:
        >>> import numpy as np
            from spotPython.fun.objectivefunctions import analytical
            from spotPython.spot import spot
                            from spotPython.utils.init import (
                fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                )
            # number of initial points:
            ni = 3
            # number of points
            n = 10
            fun = analytical().fun_sphere
            fun_control = fun_control_init(
                lower = np.array([-1, -1]),
                upper = np.array([1, 1]),
                fun_evals = n)
            design_control=design_control_init(init_size=ni)
            spot_1 = spot.Spot(fun=fun,
                        fun_control=fun_control,
                        design_control=design_control,)
            spot_1.run()
            assert spot_1.lower.size == 2
            assert spot_1.upper.size == 2
            assert len(spot_1.var_type) == 2
            assert spot_1.red_dim == False
            spot_1.lower = np.array([-1, -1])
            spot_1.upper = np.array([-1, -1])
            spot_1.to_red_dim()
            assert spot_1.lower.size == 0
            assert spot_1.upper.size == 0
            assert len(spot_1.var_type) == 0
            assert spot_1.red_dim == True

    """
    # Backup of the original values:
    self.all_lower = self.lower
    self.all_upper = self.upper
    # Select only lower != upper:
    self.ident = (self.upper - self.lower) == 0
    # Determine if dimension is reduced:
    self.red_dim = self.ident.any()
    # Modifications:
    # Modify lower and upper:
    self.lower = self.lower[~self.ident]
    self.upper = self.upper[~self.ident]
    # Modify k (dim):
    self.k = self.lower.size
    # Modify var_type:
    if self.var_type is not None:
        self.all_var_type = self.var_type
        self.var_type = [x for x, y in zip(self.all_var_type, self.ident) if not y]
    # Modify var_name:
    if self.var_name is not None:
        self.all_var_name = self.var_name
        self.var_name = [x for x, y in zip(self.all_var_name, self.ident) if not y]

update_design()

Update design. Generate and evaluate new design points. It is basically a call to the method get_new_X0(). If noise is True, additionally the following steps (from get_X_ocba()) are performed: 1. Compute OCBA points. 2. Evaluate OCBA points. 3. Append OCBA points to the new design points.

Parameters:

Name Type Description Default
self object

Spot object

required

Returns:

Type Description
NoneType

None

Attributes:

Name Type Description
self.X ndarray

updated design

self.y ndarray

updated design values

Examples:

>>> # 1. Without OCBA points:
>>> import numpy as np
    from spotPython.fun.objectivefunctions import analytical
    from spotPython.utils.init import (
        fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
        )
    from spotPython.spot import spot
    # number of initial points:
    ni = 0
    X_start = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]])
    fun = analytical().fun_sphere
    fun_control = fun_control_init(
        lower = np.array([-1, -1]),
        upper = np.array([1, 1])
        )
    design_control=design_control_init(init_size=ni)
    S = spot.Spot(fun=fun,
                fun_control=fun_control,
                design_control=design_control,)
    S.initialize_design(X_start=X_start)
    print(f"S.X: {S.X}")
    print(f"S.y: {S.y}")
    X_shape_before = S.X.shape
    print(f"X_shape_before: {X_shape_before}")
    print(f"y_size_before: {S.y.size}")
    y_size_before = S.y.size
    S.update_stats()
    S.fit_surrogate()
    S.update_design()
    print(f"S.X: {S.X}")
    print(f"S.y: {S.y}")
    print(f"S.n_points: {S.n_points}")
    print(f"X_shape_after: {S.X.shape}")
    print(f"y_size_after: {S.y.size}")
>>> #
>>> # 2. Using the OCBA points:
>>> import numpy as np
    from spotPython.fun.objectivefunctions import analytical
    from spotPython.spot import spot
    from spotPython.utils.init import fun_control_init
    # number of initial points:
    ni = 3
    X_start = np.array([[0, 1], [1, 0], [1, 1], [1, 1]])
    fun = analytical().fun_sphere
    fun_control = fun_control_init(
            sigma=0.02,
            lower = np.array([-1, -1]),
            upper = np.array([1, 1]),
            noise=True,
            ocba_delta=1,
        )
    design_control=design_control_init(init_size=ni, repeats=2)
S = spot.Spot(fun=fun,
            design_control=design_control,
            fun_control=fun_control
)
S.initialize_design(X_start=X_start)
print(f"S.X: {S.X}")
print(f"S.y: {S.y}")
X_shape_before = S.X.shape
print(f"X_shape_before: {X_shape_before}")
print(f"y_size_before: {S.y.size}")
y_size_before = S.y.size
S.update_stats()
S.fit_surrogate()
S.update_design()
print(f"S.X: {S.X}")
print(f"S.y: {S.y}")
print(f"S.n_points: {S.n_points}")
print(f"S.ocba_delta: {S.ocba_delta}")
print(f"X_shape_after: {S.X.shape}")
print(f"y_size_after: {S.y.size}")
# compare the shapes of the X and y values before and after the update_design method
assert X_shape_before[0] + S.n_points * S.fun_repeats + S.ocba_delta == S.X.shape[0]
assert X_shape_before[1] == S.X.shape[1]
assert y_size_before + S.n_points * S.fun_repeats + S.ocba_delta == S.y.size
Source code in spotPython/spot/spot.py
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
def update_design(self) -> None:
    """
    Update design. Generate and evaluate new design points.
    It is basically a call to the method `get_new_X0()`.
    If `noise` is `True`, additionally the following steps
    (from `get_X_ocba()`) are performed:
    1. Compute OCBA points.
    2. Evaluate OCBA points.
    3. Append OCBA points to the new design points.

    Args:
        self (object): Spot object

    Returns:
        (NoneType): None

    Attributes:
        self.X (numpy.ndarray): updated design
        self.y (numpy.ndarray): updated design values

    Examples:
        >>> # 1. Without OCBA points:
        >>> import numpy as np
            from spotPython.fun.objectivefunctions import analytical
            from spotPython.utils.init import (
                fun_control_init, optimizer_control_init, surrogate_control_init, design_control_init
                )
            from spotPython.spot import spot
            # number of initial points:
            ni = 0
            X_start = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]])
            fun = analytical().fun_sphere
            fun_control = fun_control_init(
                lower = np.array([-1, -1]),
                upper = np.array([1, 1])
                )
            design_control=design_control_init(init_size=ni)
            S = spot.Spot(fun=fun,
                        fun_control=fun_control,
                        design_control=design_control,)
            S.initialize_design(X_start=X_start)
            print(f"S.X: {S.X}")
            print(f"S.y: {S.y}")
            X_shape_before = S.X.shape
            print(f"X_shape_before: {X_shape_before}")
            print(f"y_size_before: {S.y.size}")
            y_size_before = S.y.size
            S.update_stats()
            S.fit_surrogate()
            S.update_design()
            print(f"S.X: {S.X}")
            print(f"S.y: {S.y}")
            print(f"S.n_points: {S.n_points}")
            print(f"X_shape_after: {S.X.shape}")
            print(f"y_size_after: {S.y.size}")
        >>> #
        >>> # 2. Using the OCBA points:
        >>> import numpy as np
            from spotPython.fun.objectivefunctions import analytical
            from spotPython.spot import spot
            from spotPython.utils.init import fun_control_init
            # number of initial points:
            ni = 3
            X_start = np.array([[0, 1], [1, 0], [1, 1], [1, 1]])
            fun = analytical().fun_sphere
            fun_control = fun_control_init(
                    sigma=0.02,
                    lower = np.array([-1, -1]),
                    upper = np.array([1, 1]),
                    noise=True,
                    ocba_delta=1,
                )
            design_control=design_control_init(init_size=ni, repeats=2)

            S = spot.Spot(fun=fun,
                        design_control=design_control,
                        fun_control=fun_control
            )
            S.initialize_design(X_start=X_start)
            print(f"S.X: {S.X}")
            print(f"S.y: {S.y}")
            X_shape_before = S.X.shape
            print(f"X_shape_before: {X_shape_before}")
            print(f"y_size_before: {S.y.size}")
            y_size_before = S.y.size
            S.update_stats()
            S.fit_surrogate()
            S.update_design()
            print(f"S.X: {S.X}")
            print(f"S.y: {S.y}")
            print(f"S.n_points: {S.n_points}")
            print(f"S.ocba_delta: {S.ocba_delta}")
            print(f"X_shape_after: {S.X.shape}")
            print(f"y_size_after: {S.y.size}")
            # compare the shapes of the X and y values before and after the update_design method
            assert X_shape_before[0] + S.n_points * S.fun_repeats + S.ocba_delta == S.X.shape[0]
            assert X_shape_before[1] == S.X.shape[1]
            assert y_size_before + S.n_points * S.fun_repeats + S.ocba_delta == S.y.size

    """
    # OCBA (only if noise). Determination of the OCBA points depends on the
    # old X and y values.
    if self.noise and self.ocba_delta > 0 and not np.all(self.var_y > 0) and (self.mean_X.shape[0] <= 2):
        logger.warning("self.var_y <= 0. OCBA points are not generated:")
        logger.warning("There are less than 3 points or points with no variance information.")
        logger.debug("In update_design(): self.mean_X: %s", self.mean_X)
        logger.debug("In update_design(): self.var_y: %s", self.var_y)
    if self.noise and self.ocba_delta > 0 and np.all(self.var_y > 0) and (self.mean_X.shape[0] > 2):
        X_ocba = get_ocba_X(self.mean_X, self.mean_y, self.var_y, self.ocba_delta)
    else:
        X_ocba = None
    # Determine the new X0 values based on the old X and y values:
    X0 = self.get_new_X0()
    # Append OCBA points to the new design points:
    if self.noise and self.ocba_delta > 0 and np.all(self.var_y > 0):
        X0 = append(X_ocba, X0, axis=0)
    X_all = self.to_all_dim_if_needed(X0)
    logger.debug(
        "In update_design(): self.fun_control sigma and seed passed to fun(): %s %s",
        self.fun_control["sigma"],
        self.fun_control["seed"],
    )
    # (S-18): Evaluating New Solutions:
    y0 = self.fun(X=X_all, fun_control=self.fun_control)
    X0, y0 = remove_nan(X0, y0)
    # Append New Solutions:
    self.X = np.append(self.X, X0, axis=0)
    self.y = np.append(self.y, y0)

update_stats()

Update the following stats: 1. min_y 2. min_X 3. counter If noise is True, additionally the following stats are computed: 1. mean_X 2. mean_y 3. min_mean_y 4. min_mean_X.

Parameters:

Name Type Description Default
self object

Spot object

required

Returns:

Type Description
NoneType

None

Attributes:

Name Type Description
self.min_y float

minimum y value

self.min_X ndarray

X value of the minimum y value

self.counter int

number of function evaluations

self.mean_X ndarray

mean X values

self.mean_y ndarray

mean y values

self.var_y ndarray

variance of y values

self.min_mean_y float

minimum mean y value

self.min_mean_X ndarray

X value of the minimum mean y value

Source code in spotPython/spot/spot.py
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
def update_stats(self) -> None:
    """
    Update the following stats: 1. `min_y` 2. `min_X` 3. `counter`
    If `noise` is `True`, additionally the following stats are computed: 1. `mean_X`
    2. `mean_y` 3. `min_mean_y` 4. `min_mean_X`.

    Args:
        self (object): Spot object

    Returns:
        (NoneType): None

    Attributes:
        self.min_y (float): minimum y value
        self.min_X (numpy.ndarray): X value of the minimum y value
        self.counter (int): number of function evaluations
        self.mean_X (numpy.ndarray): mean X values
        self.mean_y (numpy.ndarray): mean y values
        self.var_y (numpy.ndarray): variance of y values
        self.min_mean_y (float): minimum mean y value
        self.min_mean_X (numpy.ndarray): X value of the minimum mean y value

    """
    self.min_y = min(self.y)
    self.min_X = self.X[argmin(self.y)]
    self.counter = self.y.size
    self.fun_control.update({"counter": self.counter})
    # Update aggregated x and y values (if noise):
    if self.noise:
        Z = aggregate_mean_var(X=self.X, y=self.y)
        self.mean_X = Z[0]
        self.mean_y = Z[1]
        self.var_y = Z[2]
        # X value of the best mean y value so far:
        self.min_mean_X = self.mean_X[argmin(self.mean_y)]
        # variance of the best mean y value so far:
        self.min_var_y = self.var_y[argmin(self.mean_y)]
        # best mean y value so far:
        self.min_mean_y = self.mean_y[argmin(self.mean_y)]

write_db_dict()

Writes a dictionary with the experiment parameters to the json file spotPython_db.json.

Parameters:

Name Type Description Default
self object

Spot object

required

Returns:

Type Description
NoneType

None

Source code in spotPython/spot/spot.py
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
def write_db_dict(self) -> None:
    """Writes a dictionary with the experiment parameters to the json file spotPython_db.json.

    Args:
        self (object): Spot object

    Returns:
        (NoneType): None

    """
    # get the time in seconds from 1.1.1970 and convert the time to a string
    t_str = str(time.time())
    ident = str(self.fun_control["PREFIX"]) + "_" + t_str

    (
        fun_control,
        design_control,
        optimizer_control,
        spot_tuner_control,
        surrogate_control,
    ) = self.de_serialize_dicts()
    print("\n**********************")
    print("The following dictionaries are written to the json file spotPython_db.json:")
    print("fun_control:")
    pprint.pprint(fun_control)
    print("design_control:")
    pprint.pprint(design_control)
    print("optimizer_control:")
    pprint.pprint(optimizer_control)
    print("spot_tuner_control:")
    pprint.pprint(spot_tuner_control)
    print("surrogate_control:")
    pprint.pprint(surrogate_control)
    #
    # Generate a description of the results:
    # if spot_tuner_control['min_y'] exists:
    try:
        result = f"""
                  Results for {ident}: Finally, the best value is {spot_tuner_control['min_y']}
                  at {spot_tuner_control['min_X']}."""
        #
        db_dict = {
            "data": {
                "id": str(ident),
                "result": result,
                "fun_control": fun_control,
                "design_control": design_control,
                "surrogate_control": surrogate_control,
                "optimizer_control": optimizer_control,
                "spot_tuner_control": spot_tuner_control,
            }
        }
        # Check if the directory "db_dicts" exists.
        if not os.path.exists("db_dicts"):
            try:
                os.makedirs("db_dicts")
            except OSError as e:
                raise Exception(f"Error creating directory: {e}")

        if os.path.exists("db_dicts"):
            try:
                # Open the file in append mode to add each new dict as a new line
                with open("db_dicts/" + self.fun_control["db_dict_name"], "a") as f:
                    # Using json.dumps to convert the dict to a JSON formatted string
                    # We then write this string to the file followed by a newline character
                    # This ensures that each dict is on its own line, conforming to the JSON Lines format
                    f.write(json.dumps(db_dict, cls=NumpyEncoder) + "\n")
            except OSError as e:
                raise Exception(f"Error writing to file: {e}")
    except KeyError:
        print("No results to write.")