Skip to content

hyperriver_old

HyperRiver

Hyperparameter Tuning for River.

Parameters:

Name Type Description Default
seed int 126
Source code in spotriver/fun/hyperriver_old.py
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
class HyperRiver:
    """
    Hyperparameter Tuning for River.

    Args:
        seed (int): seed.
            See [Numpy Random Sampling](https://numpy.org/doc/stable/reference/random/index.html#random-quick-start)

    """

    def __init__(self, seed=126, log_level=50):
        self.seed = seed
        self.rng = default_rng(seed=self.seed)
        self.fun_control = {
            "seed": None,
            "data": None,
            "step": 10_000,
            "horizon": None,
            "grace_period": None,
            "metric": metrics.MAE(),
            "metric_sklearn": mean_absolute_error,
            "weights": array([1, 0, 0]),
            "weight_coeff": 0.0,
            "log_level": log_level,
            "var_name": [],
            "var_type": [],
            "prep_model": None,
        }
        self.log_level = self.fun_control["log_level"]
        logger.setLevel(self.log_level)
        logger.info(f"Starting the logger at level {self.log_level} for module {__name__}:")

    # def get_month_distances(x):
    #     return {
    #         calendar.month_name[month]: math.exp(-(x['month'].month - month) ** 2)
    #         for month in range(1, 13)
    #     }

    # def get_ordinal_date(x):
    #     return {'ordinal_date': x['month'].toordinal()}
    def fun_nowcasting(self, X, fun_control=None):
        """Hyperparameter Tuning of the nowcasting model.

        Returns:
            (float): objective function value. Mean of the MAEs of the predicted values.
        """
        self.fun_control.update(fun_control)

        try:
            X.shape[1]
        except ValueError:
            X = np.array([X])
        if X.shape[1] != 5:
            raise Exception
        lr = X[:, 0]
        intercept_lr = X[:, 1]
        hour = X[:, 2]
        weekday = X[:, 3]
        month = X[:, 4]

        z_res = np.array([], dtype=float)
        for i in range(X.shape[0]):
            h_i = int(hour[i])
            w_i = int(weekday[i])
            m_i = int(month[i])
            # baseline:
            extract_features = compose.TransformerUnion(get_ordinal_date)
            if h_i:
                extract_features = compose.TransformerUnion(get_ordinal_date, get_hour_distances)
            if w_i:
                extract_features = compose.TransformerUnion(extract_features, get_weekday_distances)
            if m_i:
                extract_features = compose.TransformerUnion(extract_features, get_month_distances)
            model = compose.Pipeline(
                ("features", extract_features),
                ("scale", preprocessing.StandardScaler()),
                (
                    "lin_reg",
                    linear_model.LinearRegression(
                        intercept_init=0, optimizer=optim.SGD(float(lr[i])), intercept_lr=float(intercept_lr[i])
                    ),
                ),
            )
            # eval:
            dates, metric, y_trues, y_preds = eval_nowcast_model(
                model, dataset=self.fun_control["data"], time_interval="Time"
            )
            z = metric.get()
            z_res = np.append(z_res, z)
        return z_res

    def fun_snarimax(self, X, fun_control=None):
        """Hyperparameter Tuning of the SNARIMAX model.
            SNARIMAX stands for (S)easonal (N)on-linear (A)uto(R)egressive (I)ntegrated (M)oving-(A)verage with
            e(X)ogenous inputs model.
        This model generalizes many established time series models in a single interface that can be
        trained online. It assumes that the provided training data is ordered in time and is uniformly spaced.
        It is made up of the following components:
        - S (Seasonal)
        - N (Non-linear): Any online regression model can be used, not necessarily a linear regression
            as is done in textbooks.
        - AR (Autoregressive): Lags of the target variable are used as features.
        - I (Integrated): The model can be fitted on a differenced version of a time series. In this
            context, integration is the reverse of differencing.
        - MA (Moving average): Lags of the errors are used as features.
        - X (Exogenous): Users can provide additional features. Care has to be taken to include
            features that will be available both at training and prediction time.

        Each of these components can be switched on and off by specifying the appropriate parameters.
        Classical time series models such as AR, MA, ARMA, and ARIMA can thus be seen as special
        parametrizations of the SNARIMAX model.

        This model is tailored for time series that are homoskedastic. In other words, it might not
        work well if the variance of the time series varies widely along time.

        Parameters of the hyperparameter vector:

            `p`: Order of the autoregressive part. This is the number of past target values that will be
                included as features.
            `d`: Differencing order.
            `q`: Order of the moving average part. This is the number of past error terms that will be included
                as features.
            `m`: Season length used for extracting seasonal features. If you believe your data has a seasonal
                pattern, then set this accordingly. For instance, if the data seems to exhibit a yearly seasonality,
                and that your data is spaced by month, then you should set this to `12`.
                Note that for this parameter to have any impact you should also set at least
                one of the `p`, `d`, and `q` parameters.
            `sp`:  Seasonal order of the autoregressive part. This is the number of past target values that will
                be included as features.
            `sd`: Seasonal differencing order.
            `sq`: Seasonal order of the moving average part. This is the number of past error terms that will be
                included as features.
            `lr` (float):
                learn rate of the linear regression model. A river `preprocessing.StandardScaler`
                piped with a river `linear_model.LinearRegression` will be used.
            `intercept_lr` (float): intercept of the the linear regression model. A river `preprocessing.StandardScaler`
                piped with a river `linear_model.LinearRegression` will be used.
            `hour` (bool): If `True`, an hourly component is added.
            `weekdy` (bool): If `True`, an weekday component is added.
            `month` (bool): If `True`, an monthly component is added.

        Args:
            X (array):
                Seven hyperparameters to be optimized. Here:

                `p` (int):
                    Order of the autoregressive part.
                    This is the number of past target values that will be included as features.

                `d` (int):
                    Differencing order.

                `q` (int):
                    Order of the moving average part.
                    This is the number of past error terms that will be included as features.

                `m` (int):
                    Season length used for extracting seasonal features.
                    If you believe your data has a seasonal pattern, then set this accordingly.
                    For instance, if the data seems to exhibit a yearly seasonality,
                    and that your data is spaced by month, then you should set this to `12`.
                    Note that for this parameter to have any impact you should also set
                    at least one of the `p`, `d`, and `q` parameters.

                `sp` (int):
                    Seasonal order of the autoregressive part.
                    This is the number of past target values that will be included as features.

                `sd` (int):
                    Seasonal differencing order.

                `sq`(int):
                    Seasonal order of the moving average part.
                    This is the number of past error terms that will be included as features.

                `lr` (float):
                    learn rate of the linear regression model. A river `preprocessing.StandardScaler`
                    piped with a river `linear_model.LinearRegression` will be used.

                `intercept_lr` (float): intercept of the the linear regression model.
                    A river `preprocessing.StandardScaler` piped with a river `linear_model.LinearRegression`
                    will be used.

                `hour` (bool): If `True`, an hourly component is added.

                `weekday` (bool): If `True`, an weekday component is added.

                `month` (bool): If `True`, an monthly component is added.

            fun_control (dict):
                parameter that are not optimized, e.g., `horizon`. Commonly
                referred to as "design of experiments" parameters:

                1. `horizon`: (int)

                2. `grace_period`: (int) Initial period during which the metric is not updated.
                    This is to fairly evaluate models which need a warming up period to start
                    producing meaningful forecasts.
                    The value of this parameter is equal to the `horizon` by default.

                3. `data`: dataset. Default `AirlinePassengers`.

        Returns:
            (float): objective function value. Mean of the MAEs of the predicted values.
        """
        self.fun_control.update(fun_control)

        try:
            X.shape[1]
        except ValueError:
            X = np.array([X])
        if X.shape[1] != 12:
            raise Exception
        p = X[:, 0]
        d = X[:, 1]
        q = X[:, 2]
        m = X[:, 3]
        sp = X[:, 4]
        sd = X[:, 5]
        sq = X[:, 6]
        lr = X[:, 7]
        intercept_lr = X[:, 8]
        hour = X[:, 9]
        weekday = X[:, 10]
        month = X[:, 11]

        # TODO:
        # horizon = fun_control["horizon"]
        # future = [
        #   {"month": dt.date(year=1961, month=m, day=1)} for m in range(1, horizon + 1)
        # ]
        z_res = np.array([], dtype=float)
        for i in range(X.shape[0]):
            h_i = int(hour[i])
            w_i = int(weekday[i])
            m_i = int(month[i])
            # baseline:
            extract_features = compose.TransformerUnion(get_ordinal_date)
            if h_i:
                extract_features = compose.TransformerUnion(get_ordinal_date, get_hour_distances)
            if w_i:
                extract_features = compose.TransformerUnion(extract_features, get_weekday_distances)
            if m_i:
                extract_features = compose.TransformerUnion(extract_features, get_month_distances)
            model = compose.Pipeline(
                extract_features,
                time_series.SNARIMAX(
                    p=int(p[i]),
                    d=int(d[i]),
                    q=int(q[i]),
                    m=int(m[i]),
                    sp=int(sp[i]),
                    sd=int(sd[i]),
                    sq=int(sq[i]),
                    regressor=compose.Pipeline(
                        preprocessing.StandardScaler(),
                        linear_model.LinearRegression(
                            intercept_init=0,
                            optimizer=optim.SGD(float(lr[i])),
                            intercept_lr=float(intercept_lr[i]),
                        ),
                    ),
                ),
            )
            # eval:
            res = time_series.evaluate(
                self.fun_control["data"],
                model,
                metric=self.fun_control["metric"],
                horizon=self.fun_control["horizon"],
                agg_func=statistics.mean,
            )
            z = res.get()
            z_res = np.append(z_res, z)
        return z_res

    def fun_hw(self, X, fun_control=None):
        """Hyperparameter Tuning of the HoltWinters model.

            Holt-Winters forecaster. This is a standard implementation of the Holt-Winters forecasting method.
            Certain parameterizations result in special cases, such as simple exponential smoothing.

        Args:
            X (array): five hyperparameters. The parameters of the hyperparameter vector are:

                1. `alpha`: Smoothing parameter for the level.
                2. `beta`: Smoothing parameter for the trend.
                3. `gamma`: Smoothing parameter for the seasonality.
                4. `seasonality`: The number of periods in a season.
                    For instance, this should be 4 for quarterly data, and 12 for yearly data.
                5. `multiplicative`: Whether or not to use a multiplicative formulation.

            fun_control (dict): Parameters that are are not tuned:

                1. `horizon`: (int)
                2. `grace_period`: (int) Initial period during which the metric is not updated.
                    This is to fairly evaluate models which need a warming up period to start
                    producing meaningful forecasts.
                    The value of this parameter is equal to the `horizon` by default.
                2. `data`: dataset. Default `AirlinePassengers`.

        Returns:
            (float): objective function value. Mean of the MAEs of the predicted values.
        """
        self.fun_control.update(fun_control)
        try:
            X.shape[1]
        except ValueError:
            X = np.array([X])
        if X.shape[1] != 5:
            raise Exception

        alpha = X[:, 0]
        beta = X[:, 1]
        gamma = X[:, 2]
        seasonality = X[:, 3]
        multiplicative = X[:, 4]
        z_res = np.array([], dtype=float)
        for i in range(X.shape[0]):
            model = time_series.HoltWinters(
                alpha=alpha[i],
                beta=beta[i],
                gamma=gamma[i],
                seasonality=int(seasonality[i]),
                multiplicative=int(multiplicative[i]),
            )
            res = time_series.evaluate(
                self.fun_control["data"],
                model,
                metric=self.fun_control["metric"],
                horizon=self.fun_control["horizon"],
                grace_period=self.fun_control["grace_period"],
                agg_func=statistics.mean,
            )
            z = res.get()
            z_res = np.append(z_res, z)
        return z_res

    # def fun_HTR_iter_progressive(self, X, fun_control=None):
    #     """Hyperparameter Tuning of HTR model.
    #     See: https://riverml.xyz/0.15.0/api/tree/HoeffdingTreeRegressor/
    #     Parameters
    #     ----------
    #     grace_period
    #         Number of instances a leaf should observe between split attempts.
    #     max_depth
    #         The maximum depth a tree can reach. If `None`, the tree will grow indefinitely.
    #     delta
    #         Significance level to calculate the Hoeffding bound. The significance level is given by
    #         `1 - delta`. Values closer to zero imply longer split decision delays.
    #     tau
    #         Threshold below which a split will be forced to break ties.
    #     leaf_prediction
    #         Prediction mechanism used at leafs. NOTE: order differs from the order in river!</br>
    #         - 'mean' - Target mean</br>
    #         - 'adaptive' - Chooses between 'mean' and 'model' dynamically</br>
    #         - 'model' - Uses the model defined in `leaf_model`</br>
    #     NOT IMPLEMENTED: leaf_model
    #         The regression model used to provide responses if `leaf_prediction='model'`. If not
    #         provided an instance of `river.linear_model.LinearRegression` with the default
    #         hyperparameters is used.
    #     model_selector_decay
    #         The exponential decaying factor applied to the learning models' squared errors, that
    #         are monitored if `leaf_prediction='adaptive'`. Must be between `0` and `1`. The closer
    #         to `1`, the more importance is going to be given to past observations. On the other hand,
    #         if its value approaches `0`, the recent observed errors are going to have more influence
    #         on the final decision.
    #     nominal_attributes
    #         List of Nominal attributes identifiers. If empty, then assume that all numeric attributes
    #         should be treated as continuous.
    #     splitter
    #         The Splitter or Attribute Observer (AO) used to monitor the class statistics of numeric
    #         features and perform splits. Splitters are available in the `tree.splitter` module.
    #         Different splitters are available for classification and regression tasks. Classification
    #         and regression splitters can be distinguished by their property `is_target_class`.
    #         This is an advanced option. Special care must be taken when choosing different splitters.
    #         By default, `tree.splitter.TEBSTSplitter` is used if `splitter` is `None`.
    #     min_samples_split
    #         The minimum number of samples every branch resulting from a split candidate must have
    #         to be considered valid.
    #     binary_split
    #         If True, only allow binary splits.
    #     max_size
    #         The max size of the tree, in Megabytes (MB).
    #     memory_estimate_period
    #         Interval (number of processed instances) between memory consumption checks.
    #     stop_mem_management
    #         If True, stop growing as soon as memory limit is hit.
    #     remove_poor_attrs
    #         If True, disable poor attributes to reduce memory usage.
    #     merit_preprune
    #         If True, enable merit-based tree pre-pruning.

    #     fun_control
    #         Parameters that are are not tuned:
    #             1. `horizon`: (int)
    #             2. `grace_period`: (int) Initial period during which the metric is not updated.
    #                     This is to fairly evaluate models which need a warming up period to start
    #                     producing meaningful forecasts.
    #                     The value of this parameter is equal to the `horizon` by default.
    #             3. `data`: dataset. Default `AirlinePassengers`.

    #     Returns
    #     -------
    #     (float): objective function value. Mean of the MAEs of the predicted values.
    #     """
    #     self.fun_control.update(fun_control)
    #     try:
    #         X.shape[1]
    #     except ValueError:
    #         X = np.array([X])
    #     if X.shape[1] != 11:
    #         raise Exception
    #     grace_period = X[:, 0]
    #     max_depth = X[:, 1]
    #     delta = X[:, 2]
    #     tau = X[:, 3]
    #     leaf_prediction = X[:, 4]
    #     leaf_model = X[:, 5]
    #     model_selector_decay = X[:, 6]
    #     splitter = X[:, 7]
    #     min_samples_split = X[:, 8]
    #     binary_split = X[:, 9]
    #     max_size = X[:, 10]
    #     z_res = np.array([], dtype=float)
    #     dataset_list = self.fun_control["data"]
    #     for i in range(X.shape[0]):
    #         num = compose.SelectType(numbers.Number) | preprocessing.StandardScaler()
    #         cat = compose.SelectType(str) | preprocessing.FeatureHasher(n_features=1000, seed=1)
    #         try:
    #             res = eval_oml_iter_progressive(
    #                 dataset=dataset_list,
    #                 step=self.fun_control["step"],
    #                 log_level=self.fun_control["log_level"],
    #                 metric=fun_control["metric"],
    #                 weight_coeff=fun_control["weight_coeff"],
    #                 models={
    #                     "HTR": (
    #                         (num + cat)
    #                         | tree.HoeffdingTreeRegressor(
    #                             grace_period=int(grace_period[i]),
    #                             max_depth=transform_power_10(int(max_depth[i])),
    #                             delta=float(delta[i]),
    #                             tau=float(tau[i]),
    #                             leaf_prediction=select_leaf_prediction(int(leaf_prediction[i])),
    #                             leaf_model=select_leaf_model(int(leaf_model[i])),
    #                             model_selector_decay=float(model_selector_decay[i]),
    #                             splitter=select_splitter(int(splitter[i])),
    #                             min_samples_split=int(min_samples_split[i]),
    #                             binary_split=int(binary_split[i]),
    #                             max_size=float(max_size[i]),
    #                         )
    #                     ),
    #                 },
    #             )
    #             logger.debug("res from eval_oml_iter_progressive: %s", res)
    #             y = fun_eval_oml_iter_progressive(res, metric=None, weights=self.fun_control["weights"])
    #         except Exception as err:
    #             y = np.nan
    #             print(f"Error in fun(). Call to evaluate failed. {err=}, {type(err)=}")
    #             print(f"Setting y to {y:.2f}.")
    #         z_res = np.append(z_res, y / self.fun_control["n_samples"])
    #     return z_res

    def fun_oml_iter_progressive(self, X, fun_control=None):
        """Hyperparameter Tuning of an arbitrary model.
        Returns
        -------
        (float): objective function value. Mean of the MAEs of the predicted values.
        """
        self.fun_control.update(fun_control)
        try:
            X.shape[1]
        except ValueError:
            X = np.array([X])
        if X.shape[1] != len(self.fun_control["var_name"]):
            raise Exception
        var_dict = assign_values(X, self.fun_control["var_name"])
        z_res = np.array([], dtype=float)
        dataset_list = self.fun_control["data"]
        for values in iterate_dict_values(var_dict):
            values = convert_keys(values, self.fun_control["var_type"])
            print(values)
            values = get_dict_with_levels_and_types(fun_control=self.fun_control, v=values)
            values = transform_hyper_parameter_values(fun_control=self.fun_control, hyper_parameter_values=values)
            print(values)
            model = compose.Pipeline(self.fun_control["prep_model"], self.fun_control["core_model"](**values))
            try:
                res = eval_oml_iter_progressive(
                    dataset=dataset_list,
                    step=self.fun_control["step"],
                    log_level=self.fun_control["log_level"],
                    metric=fun_control["metric"],
                    weight_coeff=fun_control["weight_coeff"],
                    models={
                        self.fun_control["model_name"]: (model),
                    },
                )
                logger.debug("res from eval_oml_iter_progressive: %s", res)
                y = fun_eval_oml_iter_progressive(res, metric=None, weights=self.fun_control["weights"])
            except Exception as err:
                y = np.nan
                print(f"Error in fun(). Call to evaluate failed. {err=}, {type(err)=}")
                print(f"Setting y to {y:.2f}.")
            z_res = np.append(z_res, y / self.fun_control["n_samples"])
        return z_res

    def compute_y(self, df_eval):
        """Compute the objective function value.
        Args:
            df_eval (pd.DataFrame): DataFrame with the evaluation results.
        Returns:
            (float): objective function value. Mean of the MAEs of the predicted values.
        Examples:
            >>> df_eval = pd.DataFrame( [[1, 2, 3], [4, 5, 6]], columns=['Metric', 'CompTime (s)', 'Memory (MB)'])
            >>> weights = [1, 1, 1]
            >>> compute_y(df_eval, weights)
            4.0
        """
        # take the mean of the MAEs/ACCs of the predicted values and ignore the NaN values
        df_eval = df_eval.dropna()
        y_error = df_eval["Metric"].mean()
        logger.debug("y_error from eval_oml_horizon: %s", y_error)
        y_r_time = df_eval["CompTime (s)"].mean()
        logger.debug("y_r_time from eval_oml_horizon: %s", y_r_time)
        y_memory = df_eval["Memory (MB)"].mean()
        logger.debug("y_memory from eval_oml_horizon: %s", y_memory)
        weights = self.fun_control["weights"]
        logger.debug("weights from eval_oml_horizon: %s", weights)
        y = weights[0] * y_error + weights[1] * y_r_time + weights[2] * y_memory
        logger.debug("weighted res from eval_oml_horizon: %s", y)
        return y

    # def fun_oml_horizon_old(self, X, fun_control=None, return_model=False, return_df=False):
    #     """Hyperparameter Tuning of an arbitrary model.
    #     Returns
    #     -------
    #     (float): objective function value. Mean of the MAEs of the predicted values.
    #     """
    #     self.fun_control.update(fun_control)
    #     weights = self.fun_control["weights"]
    #     if len(weights) != 3:
    #         raise ValueError("The weights array must be of length 3.")
    #     try:
    #         X.shape[1]
    #     except ValueError:
    #         X = np.array([X])
    #     if X.shape[1] != len(self.fun_control["var_name"]):
    #         raise Exception
    #     var_dict = assign_values(X, self.fun_control["var_name"])
    #     z_res = np.array([], dtype=float)
    #     for values in iterate_dict_values(var_dict):
    #         values = convert_keys(values, self.fun_control["var_type"])
    #         values = get_dict_with_levels_and_types(fun_control=self.fun_control, v=values)
    #         values = transform_hyper_parameter_values(fun_control=self.fun_control, hyper_parameter_values=values)
    #         model = compose.Pipeline(self.fun_control["prep_model"], self.fun_control["core_model"](**values))
    #         if return_model:
    #             return model
    #         try:
    #             df_eval, df_preds = eval_oml_horizon(
    #                 model=model,
    #                 train=self.fun_control["train"],
    #                 test=self.fun_control["test"],
    #                 target_column=self.fun_control["target_column"],
    #                 horizon=self.fun_control["horizon"],
    #                 oml_grace_period=self.fun_control["oml_grace_period"],
    #                 metric=self.fun_control["metric_sklearn"],
    #             )
    #         except Exception as err:
    #             print(f"Error in fun_oml_horizon(). Call to eval_oml_horizon failed. {err=}, {type(err)=}")
    #         if return_df:
    #             return df_eval, df_preds
    #         try:
    #             y = self.compute_y(df_eval, weights)
    #         except Exception as err:
    #             y = np.nan
    #             print(f"Error in fun(). Call to evaluate failed. {err=}, {type(err)=}")
    #             print(f"Setting y to {y:.2f}.")
    #         z_res = np.append(z_res, y / self.fun_control["n_samples"])
    #     return z_res

    def check_weights(self):
        if len(self.fun_control["weights"]) != 3:
            raise ValueError("The weights array must be of length 3.")

    def check_X_shape(self, X):
        try:
            X.shape[1]
        except ValueError:
            X = np.array([X])
        if X.shape[1] != len(self.fun_control["var_name"]):
            raise Exception

    def evaluate_model(self, model, fun_control):
        try:
            df_eval, df_preds = eval_oml_horizon(
                model=model,
                train=fun_control["train"],
                test=fun_control["test"],
                target_column=fun_control["target_column"],
                horizon=fun_control["horizon"],
                oml_grace_period=fun_control["oml_grace_period"],
                metric=fun_control["metric_sklearn"],
            )
        except Exception as err:
            print(f"Error in fun_oml_horizon(). Call to eval_oml_horizon failed. {err=}, {type(err)=}")
        return df_eval, df_preds

    def get_river_df_eval_preds(self, model):
        try:
            df_eval, df_preds = self.evaluate_model(model, self.fun_control)
        except Exception as err:
            print(f"Error in get_river_df_eval_preds(). Call to evaluate_model failed. {err=}, {type(err)=}")
            print("Setting df_eval and df.preds to np.nan")
            df_eval = np.nan
            df_preds = np.nan
        return df_eval, df_preds

    def fun_oml_horizon_old(self, X, fun_control=None):
        z_res = np.array([], dtype=float)
        self.fun_control.update(fun_control)
        self.check_weights()
        self.check_X_shape(X)
        var_dict = assign_values(X, self.fun_control["var_name"])
        for config in get_one_config_from_var_dict(var_dict, self.fun_control):
            if self.fun_control["prep_model"] is not None:
                model = compose.Pipeline(self.fun_control["prep_model"], self.fun_control["core_model"](**config))
            else:
                model = self.fun_control["core_model"](**config)
            try:
                df_eval, _ = self.evaluate_model(model, self.fun_control)
            except Exception as err:
                df_eval = np.nan
                print(f"Error in fun(). Call to evaluate failed. {err=}, {type(err)=}")
                print("Setting df_eval to np.nan.")
            try:
                y = self.compute_y(df_eval)
            except Exception as err:
                y = np.nan
                print(f"Error in fun(). Call to compute_y failed. {err=}, {type(err)=}")
                print("Setting y to np.nan.")
            z_res = np.append(z_res, y / self.fun_control["n_samples"])
        return z_res

    def fun_oml_horizon(self, X, fun_control=None):
        """
        This function calculates the horizon for a given set of data X and control parameters.

        :param X: numpy array of data
        :param fun_control: dictionary of control parameters
        :return: numpy array of horizon values
        """
        self.fun_control.update(fun_control)
        self.check_weights()
        self.check_X_shape(X)
        var_dict = assign_values(X, self.fun_control["var_name"])
        z_res = []
        for config in get_one_config_from_var_dict(var_dict, self.fun_control):
            if self.fun_control["prep_model"] is not None:
                model = compose.Pipeline(self.fun_control["prep_model"], self.fun_control["core_model"](**config))
            else:
                model = self.fun_control["core_model"](**config)
            try:
                df_eval, _ = self.evaluate_model(model, self.fun_control)
                y = self.compute_y(df_eval)
            except Exception as err:
                y = np.nan
                print(f"Error in fun(). Call to evaluate or compute_y failed. {err=}, {type(err)=}")
                print("Setting y to np.nan.")
            z_res.append(y / self.fun_control["n_samples"])
        return np.array(z_res)

compute_y(df_eval)

Compute the objective function value. Args: df_eval (pd.DataFrame): DataFrame with the evaluation results. Returns: (float): objective function value. Mean of the MAEs of the predicted values. Examples: >>> df_eval = pd.DataFrame( [[1, 2, 3], [4, 5, 6]], columns=[‘Metric’, ‘CompTime (s)’, ‘Memory (MB)’]) >>> weights = [1, 1, 1] >>> compute_y(df_eval, weights) 4.0

Source code in spotriver/fun/hyperriver_old.py
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
def compute_y(self, df_eval):
    """Compute the objective function value.
    Args:
        df_eval (pd.DataFrame): DataFrame with the evaluation results.
    Returns:
        (float): objective function value. Mean of the MAEs of the predicted values.
    Examples:
        >>> df_eval = pd.DataFrame( [[1, 2, 3], [4, 5, 6]], columns=['Metric', 'CompTime (s)', 'Memory (MB)'])
        >>> weights = [1, 1, 1]
        >>> compute_y(df_eval, weights)
        4.0
    """
    # take the mean of the MAEs/ACCs of the predicted values and ignore the NaN values
    df_eval = df_eval.dropna()
    y_error = df_eval["Metric"].mean()
    logger.debug("y_error from eval_oml_horizon: %s", y_error)
    y_r_time = df_eval["CompTime (s)"].mean()
    logger.debug("y_r_time from eval_oml_horizon: %s", y_r_time)
    y_memory = df_eval["Memory (MB)"].mean()
    logger.debug("y_memory from eval_oml_horizon: %s", y_memory)
    weights = self.fun_control["weights"]
    logger.debug("weights from eval_oml_horizon: %s", weights)
    y = weights[0] * y_error + weights[1] * y_r_time + weights[2] * y_memory
    logger.debug("weighted res from eval_oml_horizon: %s", y)
    return y

fun_hw(X, fun_control=None)

Hyperparameter Tuning of the HoltWinters model.

Holt-Winters forecaster. This is a standard implementation of the Holt-Winters forecasting method.
Certain parameterizations result in special cases, such as simple exponential smoothing.

Parameters:

Name Type Description Default
X array

five hyperparameters. The parameters of the hyperparameter vector are:

  1. alpha: Smoothing parameter for the level.
  2. beta: Smoothing parameter for the trend.
  3. gamma: Smoothing parameter for the seasonality.
  4. seasonality: The number of periods in a season. For instance, this should be 4 for quarterly data, and 12 for yearly data.
  5. multiplicative: Whether or not to use a multiplicative formulation.
required
fun_control dict

Parameters that are are not tuned:

  1. horizon: (int)
  2. grace_period: (int) Initial period during which the metric is not updated. This is to fairly evaluate models which need a warming up period to start producing meaningful forecasts. The value of this parameter is equal to the horizon by default.
  3. data: dataset. Default AirlinePassengers.
None

Returns:

Type Description
float

objective function value. Mean of the MAEs of the predicted values.

Source code in spotriver/fun/hyperriver_old.py
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
def fun_hw(self, X, fun_control=None):
    """Hyperparameter Tuning of the HoltWinters model.

        Holt-Winters forecaster. This is a standard implementation of the Holt-Winters forecasting method.
        Certain parameterizations result in special cases, such as simple exponential smoothing.

    Args:
        X (array): five hyperparameters. The parameters of the hyperparameter vector are:

            1. `alpha`: Smoothing parameter for the level.
            2. `beta`: Smoothing parameter for the trend.
            3. `gamma`: Smoothing parameter for the seasonality.
            4. `seasonality`: The number of periods in a season.
                For instance, this should be 4 for quarterly data, and 12 for yearly data.
            5. `multiplicative`: Whether or not to use a multiplicative formulation.

        fun_control (dict): Parameters that are are not tuned:

            1. `horizon`: (int)
            2. `grace_period`: (int) Initial period during which the metric is not updated.
                This is to fairly evaluate models which need a warming up period to start
                producing meaningful forecasts.
                The value of this parameter is equal to the `horizon` by default.
            2. `data`: dataset. Default `AirlinePassengers`.

    Returns:
        (float): objective function value. Mean of the MAEs of the predicted values.
    """
    self.fun_control.update(fun_control)
    try:
        X.shape[1]
    except ValueError:
        X = np.array([X])
    if X.shape[1] != 5:
        raise Exception

    alpha = X[:, 0]
    beta = X[:, 1]
    gamma = X[:, 2]
    seasonality = X[:, 3]
    multiplicative = X[:, 4]
    z_res = np.array([], dtype=float)
    for i in range(X.shape[0]):
        model = time_series.HoltWinters(
            alpha=alpha[i],
            beta=beta[i],
            gamma=gamma[i],
            seasonality=int(seasonality[i]),
            multiplicative=int(multiplicative[i]),
        )
        res = time_series.evaluate(
            self.fun_control["data"],
            model,
            metric=self.fun_control["metric"],
            horizon=self.fun_control["horizon"],
            grace_period=self.fun_control["grace_period"],
            agg_func=statistics.mean,
        )
        z = res.get()
        z_res = np.append(z_res, z)
    return z_res

fun_nowcasting(X, fun_control=None)

Hyperparameter Tuning of the nowcasting model.

Returns:

Type Description
float

objective function value. Mean of the MAEs of the predicted values.

Source code in spotriver/fun/hyperriver_old.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def fun_nowcasting(self, X, fun_control=None):
    """Hyperparameter Tuning of the nowcasting model.

    Returns:
        (float): objective function value. Mean of the MAEs of the predicted values.
    """
    self.fun_control.update(fun_control)

    try:
        X.shape[1]
    except ValueError:
        X = np.array([X])
    if X.shape[1] != 5:
        raise Exception
    lr = X[:, 0]
    intercept_lr = X[:, 1]
    hour = X[:, 2]
    weekday = X[:, 3]
    month = X[:, 4]

    z_res = np.array([], dtype=float)
    for i in range(X.shape[0]):
        h_i = int(hour[i])
        w_i = int(weekday[i])
        m_i = int(month[i])
        # baseline:
        extract_features = compose.TransformerUnion(get_ordinal_date)
        if h_i:
            extract_features = compose.TransformerUnion(get_ordinal_date, get_hour_distances)
        if w_i:
            extract_features = compose.TransformerUnion(extract_features, get_weekday_distances)
        if m_i:
            extract_features = compose.TransformerUnion(extract_features, get_month_distances)
        model = compose.Pipeline(
            ("features", extract_features),
            ("scale", preprocessing.StandardScaler()),
            (
                "lin_reg",
                linear_model.LinearRegression(
                    intercept_init=0, optimizer=optim.SGD(float(lr[i])), intercept_lr=float(intercept_lr[i])
                ),
            ),
        )
        # eval:
        dates, metric, y_trues, y_preds = eval_nowcast_model(
            model, dataset=self.fun_control["data"], time_interval="Time"
        )
        z = metric.get()
        z_res = np.append(z_res, z)
    return z_res

fun_oml_horizon(X, fun_control=None)

This function calculates the horizon for a given set of data X and control parameters.

:param X: numpy array of data :param fun_control: dictionary of control parameters :return: numpy array of horizon values

Source code in spotriver/fun/hyperriver_old.py
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
def fun_oml_horizon(self, X, fun_control=None):
    """
    This function calculates the horizon for a given set of data X and control parameters.

    :param X: numpy array of data
    :param fun_control: dictionary of control parameters
    :return: numpy array of horizon values
    """
    self.fun_control.update(fun_control)
    self.check_weights()
    self.check_X_shape(X)
    var_dict = assign_values(X, self.fun_control["var_name"])
    z_res = []
    for config in get_one_config_from_var_dict(var_dict, self.fun_control):
        if self.fun_control["prep_model"] is not None:
            model = compose.Pipeline(self.fun_control["prep_model"], self.fun_control["core_model"](**config))
        else:
            model = self.fun_control["core_model"](**config)
        try:
            df_eval, _ = self.evaluate_model(model, self.fun_control)
            y = self.compute_y(df_eval)
        except Exception as err:
            y = np.nan
            print(f"Error in fun(). Call to evaluate or compute_y failed. {err=}, {type(err)=}")
            print("Setting y to np.nan.")
        z_res.append(y / self.fun_control["n_samples"])
    return np.array(z_res)

fun_oml_iter_progressive(X, fun_control=None)

Hyperparameter Tuning of an arbitrary model. Returns


(float): objective function value. Mean of the MAEs of the predicted values.

Source code in spotriver/fun/hyperriver_old.py
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
def fun_oml_iter_progressive(self, X, fun_control=None):
    """Hyperparameter Tuning of an arbitrary model.
    Returns
    -------
    (float): objective function value. Mean of the MAEs of the predicted values.
    """
    self.fun_control.update(fun_control)
    try:
        X.shape[1]
    except ValueError:
        X = np.array([X])
    if X.shape[1] != len(self.fun_control["var_name"]):
        raise Exception
    var_dict = assign_values(X, self.fun_control["var_name"])
    z_res = np.array([], dtype=float)
    dataset_list = self.fun_control["data"]
    for values in iterate_dict_values(var_dict):
        values = convert_keys(values, self.fun_control["var_type"])
        print(values)
        values = get_dict_with_levels_and_types(fun_control=self.fun_control, v=values)
        values = transform_hyper_parameter_values(fun_control=self.fun_control, hyper_parameter_values=values)
        print(values)
        model = compose.Pipeline(self.fun_control["prep_model"], self.fun_control["core_model"](**values))
        try:
            res = eval_oml_iter_progressive(
                dataset=dataset_list,
                step=self.fun_control["step"],
                log_level=self.fun_control["log_level"],
                metric=fun_control["metric"],
                weight_coeff=fun_control["weight_coeff"],
                models={
                    self.fun_control["model_name"]: (model),
                },
            )
            logger.debug("res from eval_oml_iter_progressive: %s", res)
            y = fun_eval_oml_iter_progressive(res, metric=None, weights=self.fun_control["weights"])
        except Exception as err:
            y = np.nan
            print(f"Error in fun(). Call to evaluate failed. {err=}, {type(err)=}")
            print(f"Setting y to {y:.2f}.")
        z_res = np.append(z_res, y / self.fun_control["n_samples"])
    return z_res

fun_snarimax(X, fun_control=None)

Hyperparameter Tuning of the SNARIMAX model. SNARIMAX stands for (S)easonal (N)on-linear (A)uto(R)egressive (I)ntegrated (M)oving-(A)verage with e(X)ogenous inputs model. This model generalizes many established time series models in a single interface that can be trained online. It assumes that the provided training data is ordered in time and is uniformly spaced. It is made up of the following components: - S (Seasonal) - N (Non-linear): Any online regression model can be used, not necessarily a linear regression as is done in textbooks. - AR (Autoregressive): Lags of the target variable are used as features. - I (Integrated): The model can be fitted on a differenced version of a time series. In this context, integration is the reverse of differencing. - MA (Moving average): Lags of the errors are used as features. - X (Exogenous): Users can provide additional features. Care has to be taken to include features that will be available both at training and prediction time.

Each of these components can be switched on and off by specifying the appropriate parameters. Classical time series models such as AR, MA, ARMA, and ARIMA can thus be seen as special parametrizations of the SNARIMAX model.

This model is tailored for time series that are homoskedastic. In other words, it might not work well if the variance of the time series varies widely along time.

Parameters of the hyperparameter vector:

`p`: Order of the autoregressive part. This is the number of past target values that will be
    included as features.
`d`: Differencing order.
`q`: Order of the moving average part. This is the number of past error terms that will be included
    as features.
`m`: Season length used for extracting seasonal features. If you believe your data has a seasonal
    pattern, then set this accordingly. For instance, if the data seems to exhibit a yearly seasonality,
    and that your data is spaced by month, then you should set this to `12`.
    Note that for this parameter to have any impact you should also set at least
    one of the `p`, `d`, and `q` parameters.
`sp`:  Seasonal order of the autoregressive part. This is the number of past target values that will
    be included as features.
`sd`: Seasonal differencing order.
`sq`: Seasonal order of the moving average part. This is the number of past error terms that will be
    included as features.
`lr` (float):
    learn rate of the linear regression model. A river `preprocessing.StandardScaler`
    piped with a river `linear_model.LinearRegression` will be used.
`intercept_lr` (float): intercept of the the linear regression model. A river `preprocessing.StandardScaler`
    piped with a river `linear_model.LinearRegression` will be used.
`hour` (bool): If `True`, an hourly component is added.
`weekdy` (bool): If `True`, an weekday component is added.
`month` (bool): If `True`, an monthly component is added.

Parameters:

Name Type Description Default
X array

Seven hyperparameters to be optimized. Here:

p (int): Order of the autoregressive part. This is the number of past target values that will be included as features.

d (int): Differencing order.

q (int): Order of the moving average part. This is the number of past error terms that will be included as features.

m (int): Season length used for extracting seasonal features. If you believe your data has a seasonal pattern, then set this accordingly. For instance, if the data seems to exhibit a yearly seasonality, and that your data is spaced by month, then you should set this to 12. Note that for this parameter to have any impact you should also set at least one of the p, d, and q parameters.

sp (int): Seasonal order of the autoregressive part. This is the number of past target values that will be included as features.

sd (int): Seasonal differencing order.

sq(int): Seasonal order of the moving average part. This is the number of past error terms that will be included as features.

lr (float): learn rate of the linear regression model. A river preprocessing.StandardScaler piped with a river linear_model.LinearRegression will be used.

intercept_lr (float): intercept of the the linear regression model. A river preprocessing.StandardScaler piped with a river linear_model.LinearRegression will be used.

hour (bool): If True, an hourly component is added.

weekday (bool): If True, an weekday component is added.

month (bool): If True, an monthly component is added.

required
fun_control dict

parameter that are not optimized, e.g., horizon. Commonly referred to as “design of experiments” parameters:

  1. horizon: (int)

  2. grace_period: (int) Initial period during which the metric is not updated. This is to fairly evaluate models which need a warming up period to start producing meaningful forecasts. The value of this parameter is equal to the horizon by default.

  3. data: dataset. Default AirlinePassengers.

None

Returns:

Type Description
float

objective function value. Mean of the MAEs of the predicted values.

Source code in spotriver/fun/hyperriver_old.py
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
def fun_snarimax(self, X, fun_control=None):
    """Hyperparameter Tuning of the SNARIMAX model.
        SNARIMAX stands for (S)easonal (N)on-linear (A)uto(R)egressive (I)ntegrated (M)oving-(A)verage with
        e(X)ogenous inputs model.
    This model generalizes many established time series models in a single interface that can be
    trained online. It assumes that the provided training data is ordered in time and is uniformly spaced.
    It is made up of the following components:
    - S (Seasonal)
    - N (Non-linear): Any online regression model can be used, not necessarily a linear regression
        as is done in textbooks.
    - AR (Autoregressive): Lags of the target variable are used as features.
    - I (Integrated): The model can be fitted on a differenced version of a time series. In this
        context, integration is the reverse of differencing.
    - MA (Moving average): Lags of the errors are used as features.
    - X (Exogenous): Users can provide additional features. Care has to be taken to include
        features that will be available both at training and prediction time.

    Each of these components can be switched on and off by specifying the appropriate parameters.
    Classical time series models such as AR, MA, ARMA, and ARIMA can thus be seen as special
    parametrizations of the SNARIMAX model.

    This model is tailored for time series that are homoskedastic. In other words, it might not
    work well if the variance of the time series varies widely along time.

    Parameters of the hyperparameter vector:

        `p`: Order of the autoregressive part. This is the number of past target values that will be
            included as features.
        `d`: Differencing order.
        `q`: Order of the moving average part. This is the number of past error terms that will be included
            as features.
        `m`: Season length used for extracting seasonal features. If you believe your data has a seasonal
            pattern, then set this accordingly. For instance, if the data seems to exhibit a yearly seasonality,
            and that your data is spaced by month, then you should set this to `12`.
            Note that for this parameter to have any impact you should also set at least
            one of the `p`, `d`, and `q` parameters.
        `sp`:  Seasonal order of the autoregressive part. This is the number of past target values that will
            be included as features.
        `sd`: Seasonal differencing order.
        `sq`: Seasonal order of the moving average part. This is the number of past error terms that will be
            included as features.
        `lr` (float):
            learn rate of the linear regression model. A river `preprocessing.StandardScaler`
            piped with a river `linear_model.LinearRegression` will be used.
        `intercept_lr` (float): intercept of the the linear regression model. A river `preprocessing.StandardScaler`
            piped with a river `linear_model.LinearRegression` will be used.
        `hour` (bool): If `True`, an hourly component is added.
        `weekdy` (bool): If `True`, an weekday component is added.
        `month` (bool): If `True`, an monthly component is added.

    Args:
        X (array):
            Seven hyperparameters to be optimized. Here:

            `p` (int):
                Order of the autoregressive part.
                This is the number of past target values that will be included as features.

            `d` (int):
                Differencing order.

            `q` (int):
                Order of the moving average part.
                This is the number of past error terms that will be included as features.

            `m` (int):
                Season length used for extracting seasonal features.
                If you believe your data has a seasonal pattern, then set this accordingly.
                For instance, if the data seems to exhibit a yearly seasonality,
                and that your data is spaced by month, then you should set this to `12`.
                Note that for this parameter to have any impact you should also set
                at least one of the `p`, `d`, and `q` parameters.

            `sp` (int):
                Seasonal order of the autoregressive part.
                This is the number of past target values that will be included as features.

            `sd` (int):
                Seasonal differencing order.

            `sq`(int):
                Seasonal order of the moving average part.
                This is the number of past error terms that will be included as features.

            `lr` (float):
                learn rate of the linear regression model. A river `preprocessing.StandardScaler`
                piped with a river `linear_model.LinearRegression` will be used.

            `intercept_lr` (float): intercept of the the linear regression model.
                A river `preprocessing.StandardScaler` piped with a river `linear_model.LinearRegression`
                will be used.

            `hour` (bool): If `True`, an hourly component is added.

            `weekday` (bool): If `True`, an weekday component is added.

            `month` (bool): If `True`, an monthly component is added.

        fun_control (dict):
            parameter that are not optimized, e.g., `horizon`. Commonly
            referred to as "design of experiments" parameters:

            1. `horizon`: (int)

            2. `grace_period`: (int) Initial period during which the metric is not updated.
                This is to fairly evaluate models which need a warming up period to start
                producing meaningful forecasts.
                The value of this parameter is equal to the `horizon` by default.

            3. `data`: dataset. Default `AirlinePassengers`.

    Returns:
        (float): objective function value. Mean of the MAEs of the predicted values.
    """
    self.fun_control.update(fun_control)

    try:
        X.shape[1]
    except ValueError:
        X = np.array([X])
    if X.shape[1] != 12:
        raise Exception
    p = X[:, 0]
    d = X[:, 1]
    q = X[:, 2]
    m = X[:, 3]
    sp = X[:, 4]
    sd = X[:, 5]
    sq = X[:, 6]
    lr = X[:, 7]
    intercept_lr = X[:, 8]
    hour = X[:, 9]
    weekday = X[:, 10]
    month = X[:, 11]

    # TODO:
    # horizon = fun_control["horizon"]
    # future = [
    #   {"month": dt.date(year=1961, month=m, day=1)} for m in range(1, horizon + 1)
    # ]
    z_res = np.array([], dtype=float)
    for i in range(X.shape[0]):
        h_i = int(hour[i])
        w_i = int(weekday[i])
        m_i = int(month[i])
        # baseline:
        extract_features = compose.TransformerUnion(get_ordinal_date)
        if h_i:
            extract_features = compose.TransformerUnion(get_ordinal_date, get_hour_distances)
        if w_i:
            extract_features = compose.TransformerUnion(extract_features, get_weekday_distances)
        if m_i:
            extract_features = compose.TransformerUnion(extract_features, get_month_distances)
        model = compose.Pipeline(
            extract_features,
            time_series.SNARIMAX(
                p=int(p[i]),
                d=int(d[i]),
                q=int(q[i]),
                m=int(m[i]),
                sp=int(sp[i]),
                sd=int(sd[i]),
                sq=int(sq[i]),
                regressor=compose.Pipeline(
                    preprocessing.StandardScaler(),
                    linear_model.LinearRegression(
                        intercept_init=0,
                        optimizer=optim.SGD(float(lr[i])),
                        intercept_lr=float(intercept_lr[i]),
                    ),
                ),
            ),
        )
        # eval:
        res = time_series.evaluate(
            self.fun_control["data"],
            model,
            metric=self.fun_control["metric"],
            horizon=self.fun_control["horizon"],
            agg_func=statistics.mean,
        )
        z = res.get()
        z_res = np.append(z_res, z)
    return z_res