Skip to content

stats

compute_coefficients_table(model, X_encoded, y, vif_table=None)

Compute a coefficients table containing
  1. Variable name
  2. Zero-order correlation
  3. Partial correlation
  4. Semipartial (part) correlation
  5. Tolerance (1 / VIF)
  6. VIF

Parameters:

Name Type Description Default
model RegressionResultsWrapper

A fitted OLS model from statsmodels.

required
X_encoded DataFrame

The DataFrame used to fit the model, including ‘const’.

required
y Series

Dependent variable used in fitting the model.

required
vif_table DataFrame

A DataFrame with columns [“feature”, “VIF”] for each column in X_encoded (typ. from statsmodels.stats.outliers_influence.variance_inflation_factor). Default is None.

None

Returns:

Type Description
DataFrame

pd.DataFrame with columns: - “Variable” - “Zero-Order r” - “Partial r” - “Semipartial r” - “Tolerance” - “VIF”

Examples:

>>> from spotpython.utils.stats import compute_coefficients_table
>>> import pandas as pd
>>> import statsmodels.api as sm
>>> data = pd.DataFrame({
...     'x1': [1, 2, 3, 4, 5],
...     'x2': [2, 4, 6, 8, 10],
...     'x3': [1, 3, 5, 7, 9]
... })
>>> y = pd.Series([1, 2, 3, 4, 5])
>>> X = sm.add_constant(data)
>>> model = sm.OLS(y, X).fit()
>>> vif_table = pd.DataFrame({
...     'feature': ['x1', 'x2', 'x3'],
...     'VIF': [1, 2, 3]
... })
>>> compute_coefficients_table(model, data, y, vif_table)
   Variable  Zero-Order r  Partial r  Semipartial r  Tolerance  VIF
0       x1           0.0        0.0            0.0        1.0  1.0
1       x2           0.0        0.0            0.0        0.5  2.0
2       x3           0.0        0.0            0.0        0.333333  3.0
Source code in spotpython/utils/stats.py
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
def compute_coefficients_table(model, X_encoded, y, vif_table=None) -> pd.DataFrame:
    """
    Compute a coefficients table containing:
      1. Variable name
      2. Zero-order correlation
      3. Partial correlation
      4. Semipartial (part) correlation
      5. Tolerance (1 / VIF)
      6. VIF

    Args:
        model (statsmodels.regression.linear_model.RegressionResultsWrapper):
            A fitted OLS model from statsmodels.
        X_encoded (pd.DataFrame):
            The DataFrame used to fit the model, including 'const'.
        y (pd.Series):
            Dependent variable used in fitting the model.
        vif_table (pd.DataFrame):
            A DataFrame with columns ["feature", "VIF"] for each column in X_encoded
            (typ. from statsmodels.stats.outliers_influence.variance_inflation_factor).
            Default is None.

    Returns:
        pd.DataFrame with columns:
            - "Variable"
            - "Zero-Order r"
            - "Partial r"
            - "Semipartial r"
            - "Tolerance"
            - "VIF"

    Examples:
        >>> from spotpython.utils.stats import compute_coefficients_table
        >>> import pandas as pd
        >>> import statsmodels.api as sm
        >>> data = pd.DataFrame({
        ...     'x1': [1, 2, 3, 4, 5],
        ...     'x2': [2, 4, 6, 8, 10],
        ...     'x3': [1, 3, 5, 7, 9]
        ... })
        >>> y = pd.Series([1, 2, 3, 4, 5])
        >>> X = sm.add_constant(data)
        >>> model = sm.OLS(y, X).fit()
        >>> vif_table = pd.DataFrame({
        ...     'feature': ['x1', 'x2', 'x3'],
        ...     'VIF': [1, 2, 3]
        ... })
        >>> compute_coefficients_table(model, data, y, vif_table)
           Variable  Zero-Order r  Partial r  Semipartial r  Tolerance  VIF
        0       x1           0.0        0.0            0.0        1.0  1.0
        1       x2           0.0        0.0            0.0        0.5  2.0
        2       x3           0.0        0.0            0.0        0.333333  3.0

    """

    # Full-model R^2 and residual df
    r2_full = model.rsquared

    # We want to iterate over each predictor except the intercept
    predictors = [col for col in X_encoded.columns if col != "const"]

    results = []

    for var in predictors:
        # -------------------------------------------------------------------
        # 1) Zero-order correlation: Pearson correlation of var with y
        # -------------------------------------------------------------------
        zero_order_r = X_encoded[var].corr(y)

        # -------------------------------------------------------------------
        # 2) Partial Correlation & 3) Semipartial Correlation
        #    We compare a 'full' model vs. a 'reduced' model (without var)
        # -------------------------------------------------------------------
        X_reduced = X_encoded.drop(columns=[var])
        reduced_model = sm.OLS(y, X_reduced).fit()
        r2_reduced = reduced_model.rsquared

        # The difference in R^2 contributed by this predictor
        delta_r2 = r2_full - r2_reduced

        # Determine sign from the unstandardized coefficient in the full model
        coeff_sign = np.sign(model.params.get(var, 0.0))

        # If numeric issues occur (e.g., delta_r2 < 0), set correlations to NaN
        if delta_r2 <= 0.0 or (1 - r2_reduced) <= 0.0:
            partial_r = np.nan
            semipartial_r = np.nan
        else:
            # partial correlation
            # partial_r² = (R²_full - R²_reduced) / (1 - R²_reduced)
            partial_r = coeff_sign * np.sqrt(delta_r2 / (1 - r2_reduced))

            # semipartial correlation (also called part correlation)
            # semipartial_r² = (R²_full - R²_reduced)
            # By definition, semipartial_r = sqrt( delta_r2 ), but we treat R² as a fraction
            # Because the base R² is SSR / TSS, so:
            semipartial_r = coeff_sign * np.sqrt(delta_r2)

        # -------------------------------------------------------------------
        # 4) Tolerance & 5) VIF
        # -------------------------------------------------------------------
        if vif_table is None:
            vif_table = vif(X_encoded)
            # results.append({"Variable": var, "Zero-Order r": zero_order_r, "Partial r": partial_r, "Semipartial r": semipartial_r})
        # Get the VIF for this predictor
        vif_row = vif_table.loc[vif_table["feature"] == var, "VIF"]
        if len(vif_row) == 0:
            var_vif = np.nan
        else:
            var_vif = vif_row.iloc[0]
        if var_vif <= 0 or np.isnan(var_vif):
            tolerance = np.nan
        else:
            tolerance = 1.0 / var_vif
        # Collect results
        results.append({"Variable": var, "Zero-Order r": zero_order_r, "Partial r": partial_r, "Semipartial r": semipartial_r, "Tolerance": tolerance, "VIF": var_vif})

    return pd.DataFrame(results)

compute_standardized_betas(model, X_encoded, y)

Computes standardized (beta) coefficients for a fitted statsmodels OLS model.

Parameters:

Name Type Description Default
model RegressionResultsWrapper

The fitted OLS model.

required
X_encoded DataFrame

The design matrix of independent variables.

required
y Series

The dependent variable.

required

Returns:

Type Description
DataFrame

pandas.DataFrame: A DataFrame containing the standardized beta coefficients.

Examples:

>>> from spotpython.utils.stats import compute_standardized_betas
>>> import pandas as pd
>>> import statsmodels.api as sm
>>> data = pd.DataFrame({
...     'x1': [1, 2, 3, 4, 5],
...     'x2': [2, 4, 6, 8, 10],
...     'x3': [1, 3, 5, 7, 9]
... })
>>> y = pd.Series([1, 2, 3, 4, 5])
>>> X = sm.add_constant(data)
>>> model = sm.OLS(y, X).fit()
>>> compute_standardized_betas(model, data, y)
   Variable  Standardized Beta
0     const           0.000000
1       x1           0.000000
2       x2           0.000000
3       x3           0.000000
Source code in spotpython/utils/stats.py
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
def compute_standardized_betas(model, X_encoded, y) -> pd.DataFrame:
    """
    Computes standardized (beta) coefficients for a fitted statsmodels OLS model.

    Args:
        model (statsmodels.regression.linear_model.RegressionResultsWrapper): The fitted OLS model.
        X_encoded (pandas.DataFrame): The design matrix of independent variables.
        y (pandas.Series): The dependent variable.

    Returns:
        pandas.DataFrame: A DataFrame containing the standardized beta coefficients.

    Examples:
        >>> from spotpython.utils.stats import compute_standardized_betas
        >>> import pandas as pd
        >>> import statsmodels.api as sm
        >>> data = pd.DataFrame({
        ...     'x1': [1, 2, 3, 4, 5],
        ...     'x2': [2, 4, 6, 8, 10],
        ...     'x3': [1, 3, 5, 7, 9]
        ... })
        >>> y = pd.Series([1, 2, 3, 4, 5])
        >>> X = sm.add_constant(data)
        >>> model = sm.OLS(y, X).fit()
        >>> compute_standardized_betas(model, data, y)
           Variable  Standardized Beta
        0     const           0.000000
        1       x1           0.000000
        2       x2           0.000000
        3       x3           0.000000

    """
    coeffs_unstd = model.params
    std_X = X_encoded.drop(columns=["const"], errors="ignore").std()
    std_y = y.std()
    beta_std = coeffs_unstd.drop("const", errors="ignore") * (std_X / std_y)
    beta_std_df = pd.DataFrame({"Variable": beta_std.index, "Standardized Beta": beta_std.values})
    return beta_std_df

condition_index(df)

Calculates the Condition Index for each feature in a DataFrame to assess multicollinearity.

The Condition Index is computed based on the eigenvalues of the covariance matrix of the standardized data. High condition indices suggest potential multicollinearity issues.

Parameters:

Name Type Description Default
df DataFrame

A DataFrame containing the independent variables.

required

Returns:

Type Description
DataFrame

pandas.DataFrame: A DataFrame with the following columns: - ‘Feature’: The name of the feature. - ‘Eigenvalue’: The eigenvalue of the covariance matrix. - ‘Condition Index’: The Condition Index for the feature.

Examples:

>>> from spotpython.utils.stats import condition_index
>>> import pandas as pd
>>> data = pd.DataFrame({
...     'x1': [1, 2, 3, 4, 5],
...     'x2': [2, 4, 6, 8, 10],
...     'x3': [1, 3, 5, 7, 9]
... })
>>> condition_index(data)
   Feature  Eigenvalue  Condition Index
0      x1    1.140000         1.000000
1      x2    0.000000              inf
2      x3    0.002857        20.000000
Source code in spotpython/utils/stats.py
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
def condition_index(df) -> pd.DataFrame:
    """
    Calculates the Condition Index for each feature in a DataFrame to assess multicollinearity.

    The Condition Index is computed based on the eigenvalues of the covariance matrix
    of the standardized data. High condition indices suggest potential multicollinearity issues.

    Args:
        df (pandas.DataFrame): A DataFrame containing the independent variables.

    Returns:
        pandas.DataFrame: A DataFrame with the following columns:
            - 'Feature': The name of the feature.
            - 'Eigenvalue': The eigenvalue of the covariance matrix.
            - 'Condition Index': The Condition Index for the feature.

    Examples:
        >>> from spotpython.utils.stats import condition_index
        >>> import pandas as pd
        >>> data = pd.DataFrame({
        ...     'x1': [1, 2, 3, 4, 5],
        ...     'x2': [2, 4, 6, 8, 10],
        ...     'x3': [1, 3, 5, 7, 9]
        ... })
        >>> condition_index(data)
           Feature  Eigenvalue  Condition Index
        0      x1    1.140000         1.000000
        1      x2    0.000000              inf
        2      x3    0.002857        20.000000
    """
    # Standardisieren der Daten
    X = df.values
    X_centered = X - np.mean(X, axis=0)

    # Berechnung der Kovarianzmatrix
    covariance_matrix = np.cov(X_centered, rowvar=False)

    # Berechnung der Eigenwerte der Kovarianzmatrix
    eigenvalues, _ = np.linalg.eigh(covariance_matrix)

    # Berechnung des Condition Index
    # Condition Index ist die Wurzel des Verhältnisses des größten Eigenwertes zum jeweiligen Eigenwert
    max_eigenvalue = max(eigenvalues)
    condition_indices = np.sqrt(max_eigenvalue / eigenvalues)

    # Erstellen eines DataFrames zur Anzeige der Ergebnisse
    condition_index_df = pd.DataFrame({"Feature": df.columns, "Eigenvalue": eigenvalues, "Condition Index": condition_indices})

    return condition_index_df

cov_to_cor(covariance_matrix)

Convert a covariance matrix to a correlation matrix.

Parameters:

Name Type Description Default
covariance_matrix ndarray

A square matrix of covariance values.

required

Returns:

Type Description
ndarray

numpy.ndarray: A corresponding square matrix of correlation coefficients.

Examples:

>>> from spotpython.utils.stats import cov_to_cor
>>> import numpy as np
>>> cov_matrix = np.array([[1, 0.8], [0.8, 1]])
>>> cov_to_cor(cov_matrix)
array([[1. , 0.8],
       [0.8, 1. ]])
Source code in spotpython/utils/stats.py
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
def cov_to_cor(covariance_matrix) -> np.ndarray:
    """Convert a covariance matrix to a correlation matrix.

    Args:
        covariance_matrix (numpy.ndarray): A square matrix of covariance values.

    Returns:
        numpy.ndarray: A corresponding square matrix of correlation coefficients.

    Examples:
        >>> from spotpython.utils.stats import cov_to_cor
        >>> import numpy as np
        >>> cov_matrix = np.array([[1, 0.8], [0.8, 1]])
        >>> cov_to_cor(cov_matrix)
        array([[1. , 0.8],
               [0.8, 1. ]])
    """
    d = np.sqrt(np.diag(covariance_matrix))
    return covariance_matrix / np.outer(d, d)

fit_all_lm(basic, xlist, data, remove_na=True)

Fit a linear regression model for all possible combinations of independent variables.

Parameters:

Name Type Description Default
basic str

The basic model formula.

required
xlist list

A list of independent variables.

required
data DataFrame

The data frame containing the variables.

required
remove_na bool

Whether to remove missing values from the data frame.

True

Returns:

Name Type Description
dict dict

A dictionary containing the estimated coefficients, confidence intervals, p-values, AIC values, sample size, and the basic model formula.

Examples:

>>> from spotpython.utils.stats import fit_all_lm
>>> import pandas as pd
>>> data = pd.DataFrame({
>>>     'y': [1, 2, 3],
>>>     'x1': [4, 5, 6],
>>>     'x2': [7, 8, 9]
>>> })
>>> fit_all_lm("y ~ x1", ["x2"], data)
{'estimate':   variables  estimate  conf_low  conf_high    p         aic  n
0    basic  1.000000  1.000000   1.000000  0.0  0.000000  3
1       x2  1.000000  1.000000   1.000000  0.0  0.000000  3}
Source code in spotpython/utils/stats.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
def fit_all_lm(basic, xlist, data, remove_na=True) -> dict:
    """Fit a linear regression model for all possible combinations of independent variables.

    Args:
        basic (str): The basic model formula.
        xlist (list): A list of independent variables.
        data (pandas.DataFrame): The data frame containing the variables.
        remove_na (bool): Whether to remove missing values from the data frame.

    Returns:
        dict: A dictionary containing the estimated coefficients, confidence intervals,
            p-values, AIC values, sample size, and the basic model formula.

    Examples:
        >>> from spotpython.utils.stats import fit_all_lm
        >>> import pandas as pd
        >>> data = pd.DataFrame({
        >>>     'y': [1, 2, 3],
        >>>     'x1': [4, 5, 6],
        >>>     'x2': [7, 8, 9]
        >>> })
        >>> fit_all_lm("y ~ x1", ["x2"], data)
        {'estimate':   variables  estimate  conf_low  conf_high    p         aic  n
        0    basic  1.000000  1.000000   1.000000  0.0  0.000000  3
        1       x2  1.000000  1.000000   1.000000  0.0  0.000000  3}
    """
    # Prepare the data frame
    data = copy.deepcopy(data)
    data_cols = get_all_vars_from_formula(basic) + xlist
    # make sure that no duplicates are present in the data_cols
    data_cols = list(set(data_cols))
    data = data[data_cols]
    if remove_na:
        data = data.dropna()
    print(f"The basic model is: {basic}")
    print(f"The following features will be used for fitting the basic model: {data.columns}")
    mod_0 = ols(basic, data=data).fit()
    p = mod_0.pvalues.iloc[1]
    print(f"p-values: {p}")
    estimate = mod_0.params.iloc[1]
    print(f"estimate: {estimate}")
    conf_int = mod_0.conf_int().iloc[1]
    print(f"conf_int: {conf_int}")
    aic_value = mod_0.aic
    print(f"aic: {aic_value}")
    n = len(mod_0.resid)
    df_0 = pd.DataFrame([["basic", estimate, conf_int[0], conf_int[1], p, aic_value, n]], columns=["variables", "estimate", "conf_low", "conf_high", "p", "aic", "n"])

    # All combinations model
    comb_lst = list(itertools.chain.from_iterable(itertools.combinations(xlist, r) for r in range(1, len(xlist) + 1)))
    n_comb = len(comb_lst)
    # if more than 100 combinations, exit
    if n_comb > 100:
        print(f"Number of combinations is {n_comb}. Exiting.")
        return None
    print(f"Combinations: {comb_lst}")
    models = [ols(f"{basic} + {' + '.join(comb)}", data=data).fit() for comb in comb_lst]

    df_list = []
    for i, model in enumerate(models):
        p = model.pvalues.iloc[1]
        estimate = model.params.iloc[1]
        conf_int = model.conf_int().iloc[1]
        aic_value = model.aic
        n = len(model.resid)
        comb_str = ", ".join(comb_lst[i])
        df_list.append([comb_str, estimate, conf_int[0], conf_int[1], p, aic_value, n])

    df_coef = pd.DataFrame(df_list, columns=["variables", "estimate", "conf_low", "conf_high", "p", "aic", "n"])
    estimates = pd.concat([df_0, df_coef], ignore_index=True)
    return {"estimate": estimates, "xlist": xlist, "fun": "all_lm", "basic": basic, "family": "lm"}

get_all_vars_from_formula(formula)

Utility function to extract variables from a formula.

Parameters:

Name Type Description Default
formula str

A formula.

required

Returns:

Name Type Description
list list

A list of variables.

Examples:

>>> from spotpython.utils.stats import get_all_vars_from_formula
    get_all_vars_from_formula("y ~ x1 + x2")
        ['y', 'x1', 'x2']
    get_all_vars_from_formula("y ~ ")
        ['y']
Source code in spotpython/utils/stats.py
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
def get_all_vars_from_formula(formula) -> list:
    """Utility function to extract variables from a formula.

    Args:
        formula (str): A formula.

    Returns:
        list: A list of variables.

    Examples:
        >>> from spotpython.utils.stats import get_all_vars_from_formula
            get_all_vars_from_formula("y ~ x1 + x2")
                ['y', 'x1', 'x2']
            get_all_vars_from_formula("y ~ ")
                ['y']
    """
    # Split the formula into the dependent and independent variables
    dependent, independent = formula.split("~")
    # Strip whitespace and split the independent variables by '+'
    independent_vars = independent.strip().split("+") if independent.strip() else []
    # Combine the dependent variable with the independent variables
    return [dependent.strip()] + [var.strip() for var in independent_vars]

get_combinations(ind_list, type='indices')

Generates all possible combinations of two targets from a list of target indices. Order is not important.

Parameters:

Name Type Description Default
ind_list list

A list of target indices.

required

Returns:

Name Type Description
list list

A list of tuples, where each tuple contains a combination of two target indices. The order of the targets within a tuple is not important, and each combination appears only once.

type str

The type of output, either ‘values’ or ‘indices’. Default is ‘indices’.

Examples:

>>> from spotpython.utils.stats import get_combinations
>>> ind_list = [0, 10, 20, 30]
>>> combinations = get_combinations(ind_list)
>>> combinations = get_combinations(ind_list, type='indices')
    [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
>>> print(combinations, type='values')
    [(0, 10), (0, 20), (0, 30), (1, 20), (1, 30), (2, 30)]
Source code in spotpython/utils/stats.py
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
def get_combinations(ind_list: list, type="indices") -> list:
    """
    Generates all possible combinations of two targets from a list of target indices. Order is not important.

    Args:
        ind_list (list): A list of target indices.

    Returns:
        list: A list of tuples, where each tuple contains a combination of two target indices.
             The order of the targets within a tuple is not important, and each combination
             appears only once.
        type (str): The type of output, either 'values' or 'indices'. Default is 'indices'.

    Examples:
        >>> from spotpython.utils.stats import get_combinations
        >>> ind_list = [0, 10, 20, 30]
        >>> combinations = get_combinations(ind_list)
        >>> combinations = get_combinations(ind_list, type='indices')
            [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
        >>> print(combinations, type='values')
            [(0, 10), (0, 20), (0, 30), (1, 20), (1, 30), (2, 30)]
    """
    # check that ind_list is a list
    if not isinstance(ind_list, list):
        raise ValueError("ind_list must be a list.")
    m = len(ind_list)
    if type == "values":
        combinations = [(ind_list[i], ind_list[j]) for i in range(m) for j in range(i + 1, m)]
    elif type == "indices":
        combinations = [(i, j) for i in range(m) for j in range(i + 1, m)]
    else:
        raise ValueError("type must be either 'values' or 'indices'.")
    return combinations

partial_correlation(x, method='pearson')

Calculate the partial correlation matrix for a given data set.

Parameters:

Name Type Description Default
x DataFrame or ndarray

The data matrix with variables as columns.

required
method str

Correlation method, one of ‘pearson’, ‘kendall’, or ‘spearman’.

'pearson'

Returns:

Name Type Description
dict dict

A dictionary containing the partial correlation estimates, p-values, statistics, sample size (n), number of given parameters (gp), and method used.

Raises:

Type Description
ValueError

If input is not a matrix-like structure or not numeric.

References
  1. Kim, S. ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods 22, 6 (Nov 2015), 665–674.

Examples:

>>> from spotpython.utils.stats import partial_correlation
>>> import numpy as np
>>> import pandas as pd
>>> data = pd.DataFrame({
>>>     'A': [1, 2, 3],
>>>     'B': [4, 5, 6],
>>>     'C': [7, 8, 9]
>>> })
>>> partial_correlation(data, method='pearson')
{'estimate': array([[ 1. , -1. ,  1. ],
                    [-1. ,  1. , -1. ],
                    [ 1. , -1. ,  1. ]]),
'p_value': array([[0. , 0. , 0. ],
                  [0. , 0. , 0. ],
                  [0. , 0. , 0. ]]), ...
}
Source code in spotpython/utils/stats.py
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
def partial_correlation(x, method="pearson") -> dict:
    """Calculate the partial correlation matrix for a given data set.

    Args:
        x (pandas.DataFrame or numpy.ndarray): The data matrix with variables as columns.
        method (str): Correlation method, one of 'pearson', 'kendall', or 'spearman'.

    Returns:
        dict: A dictionary containing the partial correlation estimates, p-values,
            statistics, sample size (n), number of given parameters (gp), and method used.

    Raises:
        ValueError: If input is not a matrix-like structure or not numeric.

    References:
        1. Kim, S. ppcor: An R package for a fast calculation to semi-partial correlation coefficients.
        Commun Stat Appl Methods 22, 6 (Nov 2015), 665–674.

    Examples:
        >>> from spotpython.utils.stats import partial_correlation
        >>> import numpy as np
        >>> import pandas as pd
        >>> data = pd.DataFrame({
        >>>     'A': [1, 2, 3],
        >>>     'B': [4, 5, 6],
        >>>     'C': [7, 8, 9]
        >>> })
        >>> partial_correlation(data, method='pearson')
        {'estimate': array([[ 1. , -1. ,  1. ],
                            [-1. ,  1. , -1. ],
                            [ 1. , -1. ,  1. ]]),
        'p_value': array([[0. , 0. , 0. ],
                          [0. , 0. , 0. ],
                          [0. , 0. , 0. ]]), ...
        }
    """
    eps = 1e-6
    if isinstance(x, pd.DataFrame):
        x = x.to_numpy()
    if not isinstance(x, np.ndarray):
        raise ValueError("Supply a matrix-like 'x'")
    if not np.issubdtype(x.dtype, np.number):
        raise ValueError("'x' must be numeric")

    n = x.shape[0]
    gp = x.shape[1] - 2
    cvx = np.cov(x, rowvar=False, bias=True)

    try:
        if np.linalg.det(cvx) < np.finfo(float).eps:
            icvx = pinv(cvx)
        else:
            icvx = inv(cvx)
    except LinAlgError:
        icvx = pinv(cvx)

    p_cor = -cov_to_cor(icvx)
    np.fill_diagonal(p_cor, 1)

    if method == "kendall":
        denominator = np.sqrt(2 * (2 * (n - gp) + 5) / (9 * (n - gp) * (n - 1 - gp)))
        statistic = p_cor / denominator
        p_value = 2 * norm.cdf(-np.abs(statistic))
    else:
        factor = np.sqrt((n - 2 - gp) / (1 + eps - p_cor**2))
        statistic = p_cor * factor
        p_value = 2 * t.cdf(-np.abs(statistic), df=n - 2 - gp)

    np.fill_diagonal(statistic, 0)
    np.fill_diagonal(p_value, 0)

    return {"estimate": p_cor, "p_value": p_value, "statistic": statistic, "n": n, "gp": gp, "method": method}

partial_correlation_test(x, y, z, method='pearson')

The partial correlation coefficient between x and y given z. x and y should be arrays (vectors) of the same length, and z should be a data frame (matrix).

Parameters:

Name Type Description Default
x array - like

The first variable as a 1-dimensional array or list.

required
y array - like

The second variable as a 1-dimensional array or list.

required
z DataFrame

A data frame containing other conditional variables.

required
method str

Correlation method, one of ‘pearson’, ‘kendall’, or ‘spearman’.

'pearson'

Returns:

Name Type Description
dict dict

A dictionary with the partial correlation estimate, p-value, statistic, sample size (n), number of given parameters (gp), and method used.

References
  1. Kim, S. ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods 22, 6 (Nov 2015), 665–674.

Examples:

>>> from spotpython.utils.stats import pairwise_partial_correlation
>>> import pandas as pd
>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> z = pd.DataFrame({'C': [7, 8, 9]})
>>> pairwise_partial_correlation(x, y, z)
{'estimate': -1.0, 'p_value': 0.0, 'statistic': -inf, 'n': 3, 'gp': 1, 'method': 'pearson'}
Source code in spotpython/utils/stats.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def partial_correlation_test(x, y, z, method="pearson") -> dict:
    """The partial correlation coefficient between x and y given z.
        x and y should be arrays (vectors) of the same length, and z should be a data frame (matrix).

    Args:
        x (array-like): The first variable as a 1-dimensional array or list.
        y (array-like): The second variable as a 1-dimensional array or list.
        z (pandas.DataFrame): A data frame containing other conditional variables.
        method (str): Correlation method, one of 'pearson', 'kendall', or 'spearman'.

    Returns:
        dict: A dictionary with the partial correlation estimate, p-value, statistic,
            sample size (n), number of given parameters (gp), and method used.

    References:
        1. Kim, S. ppcor: An R package for a fast calculation to semi-partial correlation coefficients.
        Commun Stat Appl Methods 22, 6 (Nov 2015), 665–674.

    Examples:
        >>> from spotpython.utils.stats import pairwise_partial_correlation
        >>> import pandas as pd
        >>> x = [1, 2, 3]
        >>> y = [4, 5, 6]
        >>> z = pd.DataFrame({'C': [7, 8, 9]})
        >>> pairwise_partial_correlation(x, y, z)
        {'estimate': -1.0, 'p_value': 0.0, 'statistic': -inf, 'n': 3, 'gp': 1, 'method': 'pearson'}
    """
    x = np.asarray(x)
    y = np.asarray(y)
    z = pd.DataFrame(z)

    xyz = pd.concat([pd.Series(x), pd.Series(y), z], axis=1)

    pcor_result = partial_correlation(xyz, method=method)

    return {
        "estimate": pcor_result["estimate"][0, 1],
        "p_value": pcor_result["p_value"][0, 1],
        "statistic": pcor_result["statistic"][0, 1],
        "n": pcor_result["n"],
        "gp": pcor_result["gp"],
        "method": method,
    }

plot_coeff_vs_pvals(data, xlabels=None, xlim=(0, 1), xlab='p-value', ylim=None, ylab=None, xscale_log=True, yscale_log=False, title=None, show=True, y_scaler=1.1)

Plot the coefficient estimates from fit_all_lm against the corresponding p-values.

Parameters:

Name Type Description Default
data dict

A dictionary containing the estimated coefficients, p-values, and other information. Generated by the fit_all_lm function.

required
xlabels list

A list of x-axis labels.

None
xlim tuple

A tuple of the x-axis limits.

(0, 1)
xlab str

The x-axis label.

'p-value'
ylim tuple

A tuple of the y-axis limits.

None
ylab str

The y-axis label.

None
xscale_log bool

Whether to use a log scale on the x-axis.

True
yscale_log bool

Whether to use a log scale on the y-axis.

False
title str

The plot title.

None
show bool

Whether to display the plot.

True
y_scaler float

A scaling factor for the y-axis limits. Default is 1.1, i.e., 10% more than the maximum value.

1.1

Returns:

Type Description
None

None

Notes
  • Based on the R package ‘allestimates’ by Zhiqiang Wang, see https://cran.r-project.org/package=allestimates
References

Wang, Z. (2007). Two Postestimation Commands for Assessing Confounding Effects in Epidemiological Studies. The Stata Journal, 7(2), 183-196. https://doi.org/10.1177/1536867X0700700203

Examples:

>>> from spotpython.utils.stats import plot_coeff_vs_pvals, fit_all_lm
>>> import pandas as pd
>>> data = pd.DataFrame({
>>>     'y': [1, 2, 3],
>>>     'x1': [4, 5, 6],
>>>     'x2': [7, 8, 9]
>>> })
>>> estimates = fit_all_lm("y ~ x1", ["x2"], data)
>>> plot_coeff_vs_pvals(estimates)
Source code in spotpython/utils/stats.py
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
def plot_coeff_vs_pvals(data, xlabels=None, xlim=(0, 1), xlab="p-value", ylim=None, ylab=None, xscale_log=True, yscale_log=False, title=None, show=True, y_scaler=1.1) -> None:
    """Plot the coefficient estimates from fit_all_lm against the corresponding p-values.

    Args:
        data (dict):
            A dictionary containing the estimated coefficients, p-values, and other information.
            Generated by the fit_all_lm function.
        xlabels (list):
            A list of x-axis labels.
        xlim (tuple):
            A tuple of the x-axis limits.
        xlab (str):
            The x-axis label.
        ylim (tuple):
            A tuple of the y-axis limits.
        ylab (str):
            The y-axis label.
        xscale_log (bool):
            Whether to use a log scale on the x-axis.
        yscale_log (bool):
            Whether to use a log scale on the y-axis.
        title (str):
            The plot title.
        show (bool):
            Whether to display the plot.
        y_scaler (float):
            A scaling factor for the y-axis limits. Default is 1.1, i.e., 10% more than the maximum value.

    Returns:
        None

    Notes:
        * Based on the R package 'allestimates' by Zhiqiang Wang, see https://cran.r-project.org/package=allestimates

    References:
        Wang, Z. (2007). Two Postestimation Commands for Assessing Confounding Effects in Epidemiological Studies. The Stata Journal, 7(2), 183-196. https://doi.org/10.1177/1536867X0700700203

    Examples:
        >>> from spotpython.utils.stats import plot_coeff_vs_pvals, fit_all_lm
        >>> import pandas as pd
        >>> data = pd.DataFrame({
        >>>     'y': [1, 2, 3],
        >>>     'x1': [4, 5, 6],
        >>>     'x2': [7, 8, 9]
        >>> })
        >>> estimates = fit_all_lm("y ~ x1", ["x2"], data)
        >>> plot_coeff_vs_pvals(estimates)
    """
    data = copy.deepcopy(data)
    if xlabels is None:
        xlabels = [0, 0.001, 0.01, 0.05, 0.2, 0.5, 1]
    xbreaks = np.power(xlabels, np.log(0.5) / np.log(0.05))

    result_df = data["estimate"]
    if ylab is None:
        ylab = "Coefficient" if data["fun"] == "all_lm" else "Effect estimates"
    hline = 0 if data["fun"] == "all_lm" else 1

    result_df["p_value"] = np.power(result_df["p"], np.log(0.5) / np.log(0.05))
    if ylim is None:
        maxv = max(result_df["estimate"].max(), abs(result_df["estimate"].min()))
        maxv = maxv * y_scaler
        ylim = (-maxv, maxv) if data["fun"] == "all_lm" else (1 / maxv, maxv)

    plt.figure(figsize=(10, 6))
    sns.scatterplot(data=result_df, x="p_value", y="estimate")
    if xscale_log:
        plt.xscale("log")
    if yscale_log:
        plt.yscale("log")
    plt.xticks(ticks=xbreaks, labels=xlabels)
    plt.axvline(x=0.5, linestyle="--")
    plt.axhline(y=hline, linestyle="--")
    plt.xlim(xlim)
    plt.ylim(ylim)
    plt.xlabel(xlab)
    plt.ylabel(ylab)
    if title:
        plt.title(title)
    plt.grid(True)
    if show:
        plt.show()

plot_coeff_vs_pvals_by_included(data, xlabels=None, xlim=(0, 1), xlab='P value', ylim=None, ylab=None, yscale_log=False, title=None, grid=True, ncol=2, show=True, y_scaler=1.1)

Generates a panel of scatter plots with effect estimates of all possible models against p-values. Uses a dictionry generated by the fit_all_lm function. Each plot includes effect estimates from all models including a specific variable.

Parameters:

Name Type Description Default
data dict

A dictionary, generated by the fit_all_lm function, containing the following keys: - estimate (pd.DataFrame): A DataFrame containing the estimates. - xlist (list): A list of variables. - fun (str): The function name. - family (str): The family of the model.

required
xlabels list

A list of x-axis labels.

None
xlim tuple

The x-axis limits.

(0, 1)
xlab str

The x-axis label.

'P value'
ylim tuple

The y-axis limits.

None
ylab str

The y-axis label.

None
yscale_log bool

Whether to scale y-axis to log10. Default is False.

False
title str

The title of the plot.

None
grid bool

Whether to display gridlines. Default is True.

True
ncol int

Number of columns in the plot grid. Default is 2.

2
show bool

Whether to display the plot. Default is True.

True
y_scaler float

A scaling factor for the y-axis limits. Default is 1.1, i.e., 10% more than the maximum value.

1.1

Returns:

Type Description
None

None

Notes
  • Based on the R package ‘allestimates’ by Zhiqiang Wang, see https://cran.r-project.org/package=allestimates
References

Wang, Z. (2007). Two Postestimation Commands for Assessing Confounding Effects in Epidemiological Studies. The Stata Journal, 7(2), 183-196. https://doi.org/10.1177/1536867X0700700203

Examples:

data = { “estimate”: pd.DataFrame({ “variables”: [“Crude”, “AL”, “AM”, “AN”, “AO”], “estimate”: [0.5, 0.6, 0.7, 0.8, 0.9], “conf_low”: [0.1, 0.2, 0.3, 0.4, 0.5], “conf_high”: [0.9, 1.0, 1.1, 1.2, 1.3], “p”: [0.01, 0.02, 0.03, 0.04, 0.05], “aic”: [100, 200, 300, 400, 500], “n”: [10, 20, 30, 40, 50] }), “xlist”: [“AL”, “AM”, “AN”, “AO”], “fun”: “all_lm” } plot_coeff_vs_pvals_by_included(data)

Source code in spotpython/utils/stats.py
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
def plot_coeff_vs_pvals_by_included(data, xlabels=None, xlim=(0, 1), xlab="P value", ylim=None, ylab=None, yscale_log=False, title=None, grid=True, ncol=2, show=True, y_scaler=1.1) -> None:
    """
    Generates a panel of scatter plots with effect estimates of all possible models against p-values.
    Uses a dictionry generated by the fit_all_lm function.
    Each plot includes effect estimates from all models including a specific variable.

    Args:
        data (dict): A dictionary, generated by the fit_all_lm function, containing the following keys:
            - estimate (pd.DataFrame): A DataFrame containing the estimates.
            - xlist (list): A list of variables.
            - fun (str): The function name.
            - family (str): The family of the model.
        xlabels (list): A list of x-axis labels.
        xlim (tuple): The x-axis limits.
        xlab (str): The x-axis label.
        ylim (tuple): The y-axis limits.
        ylab (str): The y-axis label.
        yscale_log (bool): Whether to scale y-axis to log10. Default is False.
        title (str): The title of the plot.
        grid (bool): Whether to display gridlines. Default is True.
        ncol (int): Number of columns in the plot grid. Default is 2.
        show (bool): Whether to display the plot. Default is True.
        y_scaler (float): A scaling factor for the y-axis limits. Default is 1.1, i.e., 10% more than the maximum value.

    Returns:
        None

    Notes:
        * Based on the R package 'allestimates' by Zhiqiang Wang, see https://cran.r-project.org/package=allestimates

    References:
        Wang, Z. (2007). Two Postestimation Commands for Assessing Confounding Effects in Epidemiological Studies. The Stata Journal, 7(2), 183-196. https://doi.org/10.1177/1536867X0700700203


    Examples:
        data = {
            "estimate": pd.DataFrame({
                "variables": ["Crude", "AL", "AM", "AN", "AO"],
                "estimate": [0.5, 0.6, 0.7, 0.8, 0.9],
                "conf_low": [0.1, 0.2, 0.3, 0.4, 0.5],
                "conf_high": [0.9, 1.0, 1.1, 1.2, 1.3],
                "p": [0.01, 0.02, 0.03, 0.04, 0.05],
                "aic": [100, 200, 300, 400, 500],
                "n": [10, 20, 30, 40, 50]
            }),
            "xlist": ["AL", "AM", "AN", "AO"],
            "fun": "all_lm"
        }
        plot_coeff_vs_pvals_by_included(data)
    """
    if xlabels is None:
        xlabels = [0, 0.001, 0.01, 0.05, 0.2, 0.5, 1]
    xbreaks = np.power(xlabels, np.log(0.5) / np.log(0.05))

    result_df = data["estimate"]
    if ylab is None:
        ylab = {"all_lm": "Coefficient", "poisson": "Rate ratio", "binomial": "Odds ratio"}.get(data.get("fun"), "Effect estimates")

    hline = 0 if data["fun"] == "all_lm" else 1

    result_df["p_value"] = np.power(result_df["p"], np.log(0.5) / np.log(0.05))
    if ylim is None:
        maxv = max(result_df["estimate"].max(), abs(result_df["estimate"].min()))
        maxv = maxv * y_scaler
        if data["fun"] == "all_lm":
            ylim = (-maxv, maxv)
        else:
            ylim = (1 / maxv, maxv)

    # Create a DataFrame to mark inclusion of variables
    mark_df = pd.DataFrame({x: result_df["variables"].str.contains(x).astype(int) for x in data["xlist"]})
    df_scatter = pd.concat([result_df, mark_df], axis=1)

    # Melt the DataFrame for plotting
    df_long = df_scatter.melt(id_vars=["variables", "estimate", "conf_low", "conf_high", "p", "aic", "n", "p_value"], value_vars=data["xlist"], var_name="variable", value_name="inclusion")
    df_long["inclusion"] = df_long["inclusion"].apply(lambda x: "Included" if x > 0 else "Not included")

    # Plotting
    g = sns.FacetGrid(df_long, col="variable", hue="inclusion", palette={"Included": "blue", "Not included": "orange"}, col_wrap=ncol, height=4, sharex=False, sharey=False)
    g.map(sns.scatterplot, "p_value", "estimate")
    g.add_legend()
    for ax in g.axes.flat:
        ax.set_xticks(xbreaks)
        ax.set_xticklabels(xlabels)
        ax.set_xlim(xlim)
        ax.set_ylim(ylim)
        ax.axvline(x=0.5, linestyle="--", linewidth=1.5, color="black")  # Black dashed vertical line
        ax.axhline(y=hline, linestyle="--", linewidth=1.5, color="black")  # Black dashed horizontal line
        if grid:
            ax.grid(True)
    if yscale_log:
        g.set(yscale="log")
    g.set_axis_labels(xlab, ylab)
    g.set_titles("{col_name}")
    if title:
        plt.subplots_adjust(top=0.9)
        g.figure.suptitle(title)
    if show:
        plt.show()

preprocess_df_for_ols(df, independent_var_columns, target_col)

Preprocesses a df for fiitting an OLS regression model using the specified target column and predictors.

Parameters:

Name Type Description Default
df DataFrame

Input DataFrame containing the data.

required
independent_var_columns list of str

List of names for predictor columns.

required
target_col str

Name of the target/dependent variable column.

required

Returns:

Name Type Description
X_encoded DataFrame

Encoded predictors with a constant term.

y Series

Target variable.

Source code in spotpython/utils/stats.py
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
def preprocess_df_for_ols(df, independent_var_columns, target_col) -> tuple:
    """
    Preprocesses a df for fiitting an OLS regression model using the specified target column and predictors.

    Args:
        df (pd.DataFrame): Input DataFrame containing the data.
        independent_var_columns (list of str): List of names for predictor columns.
        target_col (str): Name of the target/dependent variable column.

    Returns:
        X_encoded (pd.DataFrame): Encoded predictors with a constant term.
        y (pd.Series): Target variable.

    """
    # Ensure the target column is numeric and 1D
    y = pd.to_numeric(df[target_col], errors="coerce").fillna(0).squeeze()
    if y.ndim != 1:
        raise ValueError(f"Target column '{target_col}' must be 1-dimensional.")

    # Ensure predictors are numeric
    X = df[independent_var_columns].apply(pd.to_numeric, errors="coerce")
    # Impute missing values
    X = X.fillna(X.median())

    # Identify categorical columns (replace with your actual categorical list if needed)
    categorical_cols = ["type"]
    encoder = OneHotEncoder(drop="first", sparse_output=False)
    X_categorical_encoded = encoder.fit_transform(df[categorical_cols])

    # Convert encoded data into a DataFrame
    X_categorical_encoded_df = pd.DataFrame(X_categorical_encoded, columns=encoder.get_feature_names_out(categorical_cols), index=df.index)  # Ensure alignment with the original DataFrame

    # Combine numeric and categorical (encoded) parts
    X_encoded = pd.concat([X, X_categorical_encoded_df], axis=1)

    # Add a constant term
    X_encoded = sm.add_constant(X_encoded)

    # Ensure alignment between X_encoded and y
    if X_encoded.shape[0] != y.shape[0]:
        raise ValueError(f"Mismatch in rows: predictors (X_encoded) have {X_encoded.shape[0]} rows, " f"but target (y) has {y.shape[0]} rows.")

    return X_encoded, y

vif(X, sorted=True)

Calculates the Variance Inflation Factor (VIF) for each feature in a DataFrame.

VIF measures the multicollinearity among independent variables within a regression model. High VIF values indicate high multicollinearity, which can cause issues with model interpretation and stability.

Parameters:

Name Type Description Default
X DataFrame

A DataFrame containing the independent variables.

required
sorted bool

Whether to sort the output DataFrame by VIF values.

True

Returns:

Type Description
DataFrame

pandas.DataFrame: A DataFrame with two columns: - “feature”: The name of the feature. - “VIF”: The Variance Inflation Factor for the feature.

Examples:

>>> from spotpython.utils.stats import vif
>>> import pandas as pd
>>> data = pd.DataFrame({
...     'x1': [1, 2, 3, 4, 5],
...     'x2': [2, 4, 6, 8, 10],
...     'x3': [1, 3, 5, 7, 9]
... })
>>> vif(data)
   feature          VIF
0      x1  1260.000000
1      x2         0.000000
2      x3   630.000000
Source code in spotpython/utils/stats.py
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
def vif(X, sorted=True) -> pd.DataFrame:
    """
    Calculates the Variance Inflation Factor (VIF) for each feature in a DataFrame.

    VIF measures the multicollinearity among independent variables within a regression model.
    High VIF values indicate high multicollinearity, which can cause issues with model
    interpretation and stability.

    Args:
        X (pandas.DataFrame): A DataFrame containing the independent variables.
        sorted (bool): Whether to sort the output DataFrame by VIF values.

    Returns:
        pandas.DataFrame: A DataFrame with two columns:
            - "feature": The name of the feature.
            - "VIF": The Variance Inflation Factor for the feature.

    Examples:
        >>> from spotpython.utils.stats import vif
        >>> import pandas as pd
        >>> data = pd.DataFrame({
        ...     'x1': [1, 2, 3, 4, 5],
        ...     'x2': [2, 4, 6, 8, 10],
        ...     'x3': [1, 3, 5, 7, 9]
        ... })
        >>> vif(data)
           feature          VIF
        0      x1  1260.000000
        1      x2         0.000000
        2      x3   630.000000
    """
    vif_data = pd.DataFrame()
    vif_data["feature"] = X.columns
    vif_data["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    if sorted:
        vif_data = vif_data.sort_values(by="VIF", ascending=False).reset_index(drop=True)
    return vif_data