aggregate
aggregate_mean_var(X, y, sort=False, var_empirical=False)
¶
Aggregate array to mean and variance per group. Note: The empirical variance might result in nan values. Therefore, the theoretical variance is calculated by default.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
X array, shape |
required |
y |
ndarray
|
values, shape |
required |
sort |
bool
|
Whether to sort the resulting DataFrame by the group keys. |
False
|
var_empirical |
bool
|
Whether to calculate the empirical variance. Default is False, which avoids nan values in the variance calculation. |
False
|
Returns:
Type | Description |
---|---|
ndarray
|
aggregated |
ndarray
|
aggregated (mean per group) |
ndarray
|
aggregated (variance per group) |
Examples:
>>> from spotpython.utils.aggregate import aggregate_mean_var
import numpy as np
X = np.array([[1, 2], [3, 4], [1, 2]])
y = np.array([1, 2, 3])
X_agg, y_mean, y_var = aggregate_mean_var(X, y)
print(X_agg)
[[1. 2.] [3. 4.]]
print(y_mean)
[2. 2.]
print(y_var)
[1 0]
# Empirical variance might result in nan values, see the example below
>>> X_agg, y_mean, y_var = aggregate_mean_var(X, y, var_empirical=True)
print(X_agg)
print(y_mean)
print(y_var)
[[1 2]
[3 4]]
[2. 2.]
[ 2. nan]
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1,2]])
y = np.array([1, 2, 3, 4, 5])
X_agg, y_mean, y_var = aggregate_mean_var(X, y, var_empirical=True)
print(X_agg)
print(y_mean)
print(y_var)
[[1 2]
[3 4]]
[3. 3.]
[4. 2.]
>>> X_1 = np.ones((2, 3))
y_1 = np.sum(X_1, axis=1)
y_2 = 2 * y_1
X_2 = np.append(X_1, 2 * X_1, axis=0)
X = np.append(X_2, X_1, axis=0)
y = np.append(y_1, y_2, axis=0)
y = np.append(y, y_2, axis=0)
print(X)
print(y)
Z = aggregate_mean_var(X, y, var_empirical=True)
print(Z)
[[1. 1. 1.]
[1. 1. 1.]
[2. 2. 2.]
[2. 2. 2.]
[1. 1. 1.]
[1. 1. 1.]]
[3. 3. 6. 6. 6. 6.]
(array([[1., 1., 1.],
[2., 2., 2.]]), array([4.5, 6. ]), array([3., 0.]))
Source code in spotpython/utils/aggregate.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
|
get_ranks(x)
¶
Returns a numpy array containing ranks of numbers within an input numpy array x.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
ndarray
|
numpy array |
required |
Returns:
Type | Description |
---|---|
ndarray
|
ranks |
Examples:
>>> get_ranks([2, 1])
[1, 0]
>>> get_ranks([20, 10, 100])
[1, 0, 2]
Source code in spotpython/utils/aggregate.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
select_distant_points(X, y, k)
¶
Selects k points that are distant from each other using a clustering approach.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
X array, shape |
required |
y |
ndarray
|
values, shape |
required |
k |
int
|
number of points to select. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
selected |
ndarray
|
selected |
Examples:
>>> from spotpython.utils.aggregate import select_distant_points
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])
y = np.array([1, 2, 3, 4, 5])
selected_points, selected_y = select_distant_points(X, y, 3)
print(selected_points)
[[ 5 6]
[ 9 10]
[ 1 2]]
print(selected_y)
[3 5 1]
Source code in spotpython/utils/aggregate.py
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
|