Skip to content

nn_many_to_many_rnn_regressor

ManyToManyRNNRegressor

Bases: LightningModule

Source code in spotpython/light/regression/nn_many_to_many_rnn_regressor.py
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
class ManyToManyRNNRegressor(L.LightningModule):
    def __init__(
        self,
        _L_in: int,
        _L_out: int,
        l1: int = 8,
        rnn_units: int = 256,
        fc_units: int = 256,
        act_fn: nn.Module = nn.ReLU(),
        dropout_prob: float = 0.0,
        bidirectional: bool = True,
        optimizer: str = "Adam",
        lr_mult: float = 1.0,
        patience: int = 5,
        epochs: int = 100,
        batch_size: int = 32,
        _torchmetric: str = "mean_squared_error",
        *args,
        **kwargs,
    ):
        super().__init__()
        self._L_in = _L_in
        self._L_out = _L_out
        if _torchmetric is None:
            _torchmetric = "mean_squared_error"
        self._torchmetric = _torchmetric
        self.metric = getattr(torchmetrics.functional.regression, _torchmetric)
        self.save_hyperparameters(ignore=["_L_in", "_L_out", "_torchmetric"])
        self.example_input_array = (torch.zeros((batch_size, 10, _L_in)), torch.tensor([10] * batch_size))

        # Instantiate the RNN layers
        self.layers = ManyToManyRNN(
            input_size=_L_in,
            output_size=_L_out,
            rnn_units=self.hparams.rnn_units,
            fc_units=self.hparams.fc_units,
            activation_fct=self.hparams.act_fn,
            dropout=self.hparams.dropout_prob,
            bidirectional=self.hparams.bidirectional,
        )

    def forward(self, x, lengths) -> torch.Tensor:
        x = self.layers(x, lengths)
        return x

    def _calculate_loss(self, batch):
        x, lengths, y = batch
        y_hat = self(x, lengths)
        y = y.view_as(y_hat)
        loss = self.metric(y_hat, y)
        return loss

    def training_step(self, batch: tuple, batch_idx) -> torch.Tensor:
        val_loss = self._calculate_loss(batch)
        return val_loss

    def validation_step(self, batch: tuple, batch_idx, prog_bar: bool = False) -> torch.Tensor:
        val_loss = self._calculate_loss(batch)
        self.log("val_loss", val_loss, prog_bar=True)
        self.log("hp_metric", val_loss, prog_bar=True)
        return val_loss

    def test_step(self, batch: tuple, batch_idx: int, prog_bar: bool = False) -> torch.Tensor:
        val_loss = self._calculate_loss(batch)
        self.log("val_loss", val_loss, prog_bar=prog_bar)
        self.log("hp_metric", val_loss, prog_bar=prog_bar)
        return val_loss

    def configure_optimizers(self) -> dict:
        """
        Configures the optimizer for the model.

        Notes:
            The default Lightning way is to define an optimizer as
            `optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)`.
            spotpython uses an optimizer handler to create the optimizer, which
            adapts the learning rate according to the lr_mult hyperparameter as
            well as other hyperparameters. See `spotpython.hyperparameters.optimizer.py` for details.

        Returns:
            torch.optim.Optimizer: The optimizer to use during training.

        """
        # optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
        optimizer = optimizer_handler(optimizer_name=self.hparams.optimizer, params=self.parameters(), lr_mult=self.hparams.lr_mult)

        num_milestones = 3  # Number of milestones to divide the epochs
        milestones = [int(self.hparams.epochs / (num_milestones + 1) * (i + 1)) for i in range(num_milestones)]
        scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=0.1)  # Decay factor

        lr_scheduler_config = {
            "scheduler": scheduler,
            "interval": "epoch",
            "frequency": 1,
        }

        return {"optimizer": optimizer, "lr_scheduler": lr_scheduler_config}

configure_optimizers()

Configures the optimizer for the model.

Notes

The default Lightning way is to define an optimizer as optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate). spotpython uses an optimizer handler to create the optimizer, which adapts the learning rate according to the lr_mult hyperparameter as well as other hyperparameters. See spotpython.hyperparameters.optimizer.py for details.

Returns:

Type Description
dict

torch.optim.Optimizer: The optimizer to use during training.

Source code in spotpython/light/regression/nn_many_to_many_rnn_regressor.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def configure_optimizers(self) -> dict:
    """
    Configures the optimizer for the model.

    Notes:
        The default Lightning way is to define an optimizer as
        `optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)`.
        spotpython uses an optimizer handler to create the optimizer, which
        adapts the learning rate according to the lr_mult hyperparameter as
        well as other hyperparameters. See `spotpython.hyperparameters.optimizer.py` for details.

    Returns:
        torch.optim.Optimizer: The optimizer to use during training.

    """
    # optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
    optimizer = optimizer_handler(optimizer_name=self.hparams.optimizer, params=self.parameters(), lr_mult=self.hparams.lr_mult)

    num_milestones = 3  # Number of milestones to divide the epochs
    milestones = [int(self.hparams.epochs / (num_milestones + 1) * (i + 1)) for i in range(num_milestones)]
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=0.1)  # Decay factor

    lr_scheduler_config = {
        "scheduler": scheduler,
        "interval": "epoch",
        "frequency": 1,
    }

    return {"optimizer": optimizer, "lr_scheduler": lr_scheduler_config}