Skip to content

objectivefunctions

analytical

Class for analytical test functions.

Parameters:

Name Type Description Default
offset float

Offset value. Defaults to 0.0.

0.0
hz float

Horizontal value. Defaults to 0.

0
seed int

Seed value for random number generation. Defaults to 126.

126
Notes

See Numpy Random Sampling

Attributes:

Name Type Description
offset float

Offset value.

hz float

Horizontal value.

sigma float

Noise level.

seed int

Seed value for random number generation.

rng Generator

Numpy random number generator object.

fun_control dict

Dictionary containing control parameters for the function.

Source code in spotpython/fun/objectivefunctions.py
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
class analytical:
    """
    Class for analytical test functions.

    Args:
        offset (float):
            Offset value. Defaults to 0.0.
        hz (float):
            Horizontal value. Defaults to 0.
        seed (int):
            Seed value for random number generation. Defaults to 126.

    Notes:
        See [Numpy Random Sampling](https://numpy.org/doc/stable/reference/random/index.html#random-quick-start)

    Attributes:
        offset (float):
            Offset value.
        hz (float):
            Horizontal value.
        sigma (float):
            Noise level.
        seed (int):
            Seed value for random number generation.
        rng (Generator):
            Numpy random number generator object.
        fun_control (dict):
            Dictionary containing control parameters for the function.
    """

    def __init__(self, offset: float = 0.0, hz: float = 0, sigma=0.0, seed: int = 126) -> None:
        self.offset = offset
        self.hz = hz
        self.sigma = sigma
        self.seed = seed
        self.rng = default_rng(seed=self.seed)
        self.fun_control = {"sigma": sigma, "seed": None, "sel_var": None}

    def __repr__(self) -> str:
        return f"analytical(offset={self.offset}, hz={self.hz}, seed={self.seed})"

    def add_noise(self, y: List[float]) -> np.ndarray:
        """
        Adds noise to the input data.
        This method takes in a list of float values y as input and adds noise to
        the data using a random number generator. The method returns a numpy array
        containing the noisy data.

        Args:
            self (analytical): analytical class object.
            y (List[float]): Input data.

        Returns:
            np.ndarray: Noisy data.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
                import numpy as np
                y = np.array([1, 2, 3, 4, 5])
                fun = analytical(sigma=1.0, seed=123)
                fun.add_noise(y)
            array([0.01087865, 1.63221335, 4.28792526, 4.19397442, 5.9202309 ])

        """
        # Use own rng:
        if self.fun_control["seed"] is not None:
            rng = default_rng(seed=self.fun_control["seed"])
        # Use class rng:
        else:
            rng = self.rng
        noise_y = np.array([], dtype=float)
        for y_i in y:
            noise_y = np.append(
                noise_y,
                y_i + rng.normal(loc=0, scale=self.fun_control["sigma"], size=1),
            )
        return noise_y

    def fun_branin_factor(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        """
        Calculates the Branin function of (x1, x2) with an additional factor based on the value of x3.
        If x3 = 1, the value of the Branin function is increased by 10.
        If x3 = 2, the value of the Branin function is decreased by 10.
        Otherwise, the value of the Branin function is not changed.

        Args:
            X (np.ndarray):
                A 2D numpy array with shape (n, 3) where n is the number of samples.
            fun_control (Optional[Dict]):
                A dictionary containing control parameters for the function.
                If None, self.fun_control is used. Defaults to None.

        Returns:
            np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
                import numpy as np
                X = np.array([[0, 0, 0], [0, 0, 1], [0, 0, 2]])
                fun = analytical()
                fun.fun_branin_factor(X)
                array([55.60211264, 65.60211264, 45.60211264])
        """
        if fun_control is None:
            fun_control = self.fun_control
        if len(X.shape) == 1:
            X = np.array([X])
        if X.shape[1] != 3:
            raise Exception("X must have shape (n, 3)")
        x1 = X[:, 0]
        x2 = X[:, 1]
        x3 = X[:, 2]
        a = 1
        b = 5.1 / (4 * np.pi**2)
        c = 5 / np.pi
        r = 6
        s = 10
        t = 1 / (8 * np.pi)
        y = a * (x2 - b * x1**2 + c * x1 - r) ** 2 + s * (1 - t) * np.cos(x1) + s
        for j in range(X.shape[0]):
            if x3[j] == 1:
                y[j] = y[j] + 10
            elif x3[j] == 2:
                y[j] = y[j] - 10
        if self.fun_control["sigma"] > 0:
            return self.add_noise(y)
        else:
            return y

    def fun_linear(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        """Linear function.

        Args:
            X (array):
                input
            fun_control (dict):
                dict with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
            >>> import numpy as np
            >>> X = np.array([[1, 2, 3], [4, 5, 6]])
            >>> fun = analytical()
            >>> fun.fun_linear(X)
            array([ 6., 15.])

        """
        if fun_control is not None:
            self.fun_control = fun_control
        if not isinstance(X, np.ndarray):
            X = np.array(X)
        X = np.atleast_2d(X)
        y = np.array([], dtype=float)
        for i in range(X.shape[0]):
            y = np.append(y, np.sum(X[i]))
        if self.fun_control["sigma"] > 0:
            return self.add_noise(y)
        else:
            return y

    def fun_sphere(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        """Sphere function.

        Args:
            X (array):
                input
            fun_control (dict):
                dict with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
            >>> import numpy as np
            >>> X = np.array([[1, 2, 3], [4, 5, 6]])
            >>> fun = analytical()
            >>> fun.fun_sphere(X)
            array([14., 77.])

        """
        if fun_control is not None:
            self.fun_control = fun_control
        if not isinstance(X, np.ndarray):
            X = np.array(X)
        X = np.atleast_2d(X)
        offset = np.ones(X.shape[1]) * self.offset
        y = np.array([], dtype=float)
        for i in range(X.shape[0]):
            y = np.append(y, np.sum((X[i] - offset) ** 2))
        if self.fun_control["sigma"] > 0:
            return self.add_noise(y)
        else:
            return y

    def fun_cubed(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        """Cubed function.

        Args:
            X (array):
                input
            fun_control (dict):
                dict with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
            >>> import numpy as np
            >>> X = np.array([[1, 2, 3], [4, 5, 6]])
            >>> fun = analytical()
            >>> fun.fun_cubed(X)
            array([ 0., 27.])
        """

        if fun_control is None:
            fun_control = self.fun_control
        if not isinstance(X, np.ndarray):
            X = np.array(X)

        X = np.atleast_2d(X)
        offset = np.ones(X.shape[1]) * self.offset
        y = np.array([], dtype=float)
        for i in range(X.shape[0]):
            y = np.append(y, np.sum((X[i] - offset) ** 3))
        if self.fun_control["sigma"] > 0:
            return self.add_noise(y)
        else:
            return y

    def fun_forrester(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        """Forrester function. Function used by [Forr08a, p.83].
           f(x) = (6x- 2)^2 sin(12x-4) for x in [0,1].
           Starts with three sample points at x=0, x=0.5, and x=1.

        Args:
            X (array):
                input
            fun_control (dict):
                dict with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
            >>> import numpy as np
            >>> X = np.array([[1, 2, 3], [4, 5, 6]])
            >>> fun = analytical()
            >>> fun.fun_forrester(X)
            array([  0.        ,  11.99999999])
        """
        if fun_control is None:
            fun_control = self.fun_control
        if not isinstance(X, np.ndarray):
            X = np.array(X)

        X = np.atleast_2d(X)
        y = np.array([], dtype=float)
        for i in range(X.shape[0]):
            y = np.append(y, (6.0 * X[i] - 2) ** 2 * np.sin(12 * X[i] - 4))
        if self.fun_control["sigma"] > 0:
            return self.add_noise(y)
        else:
            return y

    def fun_branin(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        r"""Branin function. The 2-dim Branin function is defined as
            $$
            y = a (x_2 - b x_1^2 + c x_1 - r) ^2 + s (1 - t) \cos(x_1) + s,
            $$
            where values of $a, b, c, r, s$ and $t$ are:
            $a = 1$, $b = 5.1 / (4\pi^2)$, $c = 5 / \pi$, $r = 6$, $s = 10$ and $t = 1 / (8\pi)$.
            It has three global minima with $f(x) = 0.39788736$ at
            $$
            (-\pi, 12.275),
            $$
            $$
            (\pi, 2.275),
            $$
            and
            $$
            (9.42478, 2.475).
            $$
            Input domain: This function is usually evaluated on the square $x_1 \in [-5, 10] \times x_2 \in [0, 15]$.

        Args:
            X (array):
                input
            fun_control (dict):
                dict with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
                pi = np.pi
                X = np.array([[0,0],
                    [-pi, 12.275],
                    [pi, 2.275],
                    [9.42478, 2.475]])
                fun = analytical()
                fun.fun_branin(X)
                array([55.60211264,  0.39788736,  0.39788736,  0.39788736])

        """
        if fun_control is None:
            fun_control = self.fun_control
        if not isinstance(X, np.ndarray):
            X = np.array(X)
        if X.shape[1] != 2:
            raise Exception
        x1 = X[:, 0]
        x2 = X[:, 1]
        a = 1
        b = 5.1 / (4 * np.pi**2)
        c = 5 / np.pi
        r = 6
        s = 10
        t = 1 / (8 * np.pi)
        y = a * (x2 - b * x1**2 + c * x1 - r) ** 2 + s * (1 - t) * np.cos(x1) + s
        if self.fun_control["sigma"] > 0:
            return self.add_noise(y)
        else:
            return y

    def fun_branin_modified(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        """Modified Branin function.

        Args:
            X (array):
                input
            fun_control (dict):
                dict with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
            >>> import numpy as np
            >>> X = np.array([[1, 2, 3], [4, 5, 6]])
            >>> fun = analytical()
            >>> fun.fun_branin_modified(X)
            array([  0.        ,  11.99999999])

        """
        if fun_control is None:
            fun_control = self.fun_control
        if not isinstance(X, np.ndarray):
            X = np.array(X)

        if X.shape[1] != 2:
            raise Exception
        x = X[:, 0]
        y = X[:, 1]
        X1 = 15 * x - 5
        X2 = 15 * y
        a = 1
        b = 5.1 / (4 * np.pi**2)
        c = 5 / np.pi
        d = 6
        e = 10
        ff = 1 / (8 * np.pi)
        y = (a * (X2 - b * X1**2 + c * X1 - d) ** 2 + e * (1 - ff) * np.cos(X1) + e) + 5 * x
        if self.fun_control["sigma"] > 0:
            return self.add_noise(y)
        else:
            return y

    def branin_noise(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        """Branin function with noise.

        Args:
            X (array):
                input
            fun_control (dict):
                dict with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            (np.ndarray): A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
            >>> import numpy as np
            >>> X = np.array([[1, 2, 3], [4, 5, 6]])
            >>> fun = analytical()
            >>> fun.branin_noise(X)
            array([  0.        ,  11.99999999])

        """
        if not isinstance(X, np.ndarray):
            X = np.array(X)

        if X.shape[1] != 2:
            raise Exception
        x = X[:, 0]
        y = X[:, 1]
        X1 = 15 * x - 5
        X2 = 15 * y
        a = 1
        b = 5.1 / (4 * np.pi**2)
        c = 5 / np.pi
        d = 6
        e = 10
        ff = 1 / (8 * np.pi)
        noiseFree = (a * (X2 - b * X1**2 + c * X1 - d) ** 2 + e * (1 - ff) * np.cos(X1) + e) + 5 * x
        noise_y = []
        for i in noiseFree:
            noise_y.append(i + np.random.standard_normal() * 15)
        return np.array(noise_y)

    def fun_sin_cos(self, X, fun_control=None):
        """Sinusoidal function.
        Args:
            X (array):
                input
            fun_control (dict):
                dict with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            (np.ndarray): A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
            >>> import numpy as np
            >>> X = np.array([[1, 2, 3], [4, 5, 6]])
            >>> fun = analytical()
            >>> fun.fun_sin_cos(X)
            array([-1.        , -0.41614684])
        """

        if fun_control is None:
            fun_control = self.fun_control
        if not isinstance(X, np.ndarray):
            X = np.array(X)
        if X.shape[1] != 2:
            raise Exception
        x0 = X[:, 0]
        x1 = X[:, 1]
        y = 2.0 * np.sin(x0 + self.hz) + 0.5 * np.cos(x1 + self.hz)
        if self.fun_control["sigma"] > 0:
            return self.add_noise(y)
        else:
            return y

    # def fun_forrester_2(self, X):
    #     """
    #     Function used by [Forr08a, p.83].
    #     f(x) = (6x- 2)^2 sin(12x-4) for x in [0,1].
    #     Starts with three sample points at x=0, x=0.5, and x=1.

    #     Args:
    #         X (flooat): input values (1-dim)

    #     Returns:
    #         float: function value
    #     """
    #     try:
    #         X.shape[1]
    #     except ValueError:
    #         X = np.array(X)

    # X = np.atleast_2d(X)
    #     # y = X[:, 1]
    #     y = (6.0 * X - 2) ** 2 * np.sin(12 * X - 4)
    #     if self.sigma != 0:
    #         noise_y = np.array([], dtype=float)
    #         for i in y:
    #             noise_y = np.append(
    #                 noise_y, i + np.random.normal(loc=0, scale=self.sigma, size=1)
    #             )
    #         return noise_y
    #     else:
    #         return y

    def fun_runge(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        """Runge function. Formula: f(x) = 1/ (1 + sum(x_i) - offset)^2. Dim: k >= 1.
           Interval: -5 <= x <= 5

        Args:
            X (array): input
            fun_control (dict): dict with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
            >>> import numpy as np
            >>> X = np.array([[1, 2, 3], [4, 5, 6]])
            >>> fun = analytical()
            >>> fun.fun_runge(X)
            array([0.0625    , 0.015625  , 0.00390625])

        """
        if fun_control is None:
            fun_control = self.fun_control
        if not isinstance(X, np.ndarray):
            X = np.array(X)

        if X.ndim == 1:
            X = X.reshape(-1, 1)
        offset = np.ones(X.shape[1]) * self.offset
        y = np.array([], dtype=float)
        for i in range(X.shape[0]):
            y = np.append(y, (1 / (1 + np.sum((X[i] - offset) ** 2))))
        if self.fun_control["sigma"] > 0:
            return self.add_noise(y)
        else:
            return y

    def fun_wingwt(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        r"""Wing weight function. Example from Forrester et al. to understand the weight
            of an unpainted light aircraft wing as a function of nine design and operational parameters:
            $W=0.036 S_W^{0.758}  Wfw^{0.0035} ( A / (\cos^2 \Lambda))^{0.6} q^{0.006}  \lambda^{0.04} ( (100 Rtc)/(\cos
              \Lambda) ))^{-0.3} (Nz Wdg)^{0.49}$

        | Symbol    | Parameter                              | Baseline | Minimum | Maximum |
        |-----------|----------------------------------------|----------|---------|---------|
        | $S_W$     | Wing area ($ft^2$)                     | 174      | 150     | 200     |
        | $W_{fw}$  | Weight of fuel in wing (lb)            | 252      | 220     | 300     |
        | $A$       | Aspect ratio                          | 7.52     | 6       | 10      |
        | $\Lambda$ | Quarter-chord sweep (deg)              | 0        | -10     | 10      |
        | $q$       | Dynamic pressure at cruise ($lb/ft^2$) | 34       | 16      | 45      |
        | $\lambda$ | Taper ratio                            | 0.672    | 0.5     | 1       |
        | $R_{tc}$  | Aerofoil thickness to chord ratio      | 0.12     | 0.08    | 0.18    |
        | $N_z$     | Ultimate load factor                   | 3.8      | 2.5     | 6       |
        | $W_{dg}$  | Flight design gross weight (lb)         | 2000     | 1700    | 2500    |
        | $W_p$     | paint weight (lb/ft^2)                   | 0.064 |   0.025  | 0.08    |

        Args:
            X (array): input
            fun_control (dict): dict with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
            >>> import numpy as np
            >>> X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9], [4, 5, 6, 7, 8, 9, 10, 11, 12]])
            >>> fun = analytical()
            >>> fun.fun_wingwt(X)
            array([0.0625    , 0.015625  , 0.00390625])

        """
        if fun_control is None:
            fun_control = self.fun_control
        if not isinstance(X, np.ndarray):
            X = np.array(X)
        #
        y = np.array([], dtype=float)
        for i in range(X.shape[0]):
            Sw = X[i, 0] * (200 - 150) + 150
            Wfw = X[i, 1] * (300 - 220) + 220
            A = X[i, 2] * (10 - 6) + 6
            L = (X[i, 3] * (10 - (-10)) - 10) * np.pi / 180
            q = X[i, 4] * (45 - 16) + 16
            la = X[i, 5] * (1 - 0.5) + 0.5
            Rtc = X[i, 6] * (0.18 - 0.08) + 0.08
            Nz = X[i, 7] * (6 - 2.5) + 2.5
            Wdg = X[i, 8] * (2500 - 1700) + 1700
            Wp = X[i, 9] * (0.08 - 0.025) + 0.025
            # calculation on natural scale
            W = 0.036 * Sw**0.758 * Wfw**0.0035 * (A / np.cos(L) ** 2) ** 0.6 * q**0.006
            W = W * la**0.04 * (100 * Rtc / np.cos(L)) ** (-0.3) * (Nz * Wdg) ** (0.49) + Sw * Wp
            y = np.append(y, W)
        if self.fun_control["sigma"] > 0:
            return self.add_noise(y)
        else:
            return y

    def fun_xsin(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        """Example function.
        Args:
            X (array): input
            fun_control (dict): dict with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
            >>> import numpy as np
            >>> X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9], [4, 5, 6, 7, 8, 9, 10, 11, 12]])
            >>> fun = analytical()
            >>> fun.fun_xsin(X)
            array([0.84147098, 0.90929743, 0.14112001])

        """
        if fun_control is None:
            fun_control = self.fun_control
        if not isinstance(X, np.ndarray):
            X = np.array(X)
        X = np.atleast_2d(X)
        y = np.array([], dtype=float)
        for i in range(X.shape[0]):
            y = np.append(y, X[i] * np.sin(1.0 / X[i]))
        if self.fun_control["sigma"] > 0:
            return self.add_noise(y)
        else:
            return y

    def fun_rosen(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        """Rosenbrock function.
        Args:
            X (array): input
            fun_control (dict): dict with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
            >>> import numpy as np
            >>> X = np.array([[1, 2,], [4, 5 ]])
            >>> fun = analytical()
            >>> fun.fun_rosen(X)
            array([24,  0])
        """

        if fun_control is None:
            fun_control = self.fun_control
        if not isinstance(X, np.ndarray):
            X = np.array(X)
        if X.shape[1] != 2:
            raise Exception
        x0 = X[:, 0]
        x1 = X[:, 1]
        b = 10
        y = (x0 - 1) ** 2 + b * (x1 - x0**2) ** 2
        if self.fun_control["sigma"] > 0:
            return self.add_noise(y)
        else:
            return y

    def fun_random_error(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        """Return errors for testing spot stability.
        Args:
            X (array): input
            fun_control (dict): dict with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

        Examples:
            >>> from spotpython.fun.objectivefunctions import analytical
            >>> import numpy as np
            >>> X = np.array([[1, 2,], [4, 5 ]])
            >>> fun = analytical()
            >>> fun.fun_random_error(X)
            array([24,  0])

        """
        if fun_control is not None:
            self.fun_control = fun_control
        if not isinstance(X, np.ndarray):
            X = np.array(X)

        if X.ndim == 1:
            X = X.reshape(-1, 1)
        y = np.array([], dtype=float)
        for i in range(X.shape[0]):
            # provoke error:
            if random() < 0.1:
                y = np.append(y, np.nan)
            else:
                y = np.append(y, np.sum(X[i]))
        if self.fun_control["sigma"] > 0:
            return self.add_noise(y)
        else:
            print(y)
            return y

add_noise(y)

Adds noise to the input data. This method takes in a list of float values y as input and adds noise to the data using a random number generator. The method returns a numpy array containing the noisy data.

Parameters:

Name Type Description Default
self analytical

analytical class object.

required
y List[float]

Input data.

required

Returns:

Type Description
ndarray

np.ndarray: Noisy data.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
    import numpy as np
    y = np.array([1, 2, 3, 4, 5])
    fun = analytical(sigma=1.0, seed=123)
    fun.add_noise(y)
array([0.01087865, 1.63221335, 4.28792526, 4.19397442, 5.9202309 ])
Source code in spotpython/fun/objectivefunctions.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def add_noise(self, y: List[float]) -> np.ndarray:
    """
    Adds noise to the input data.
    This method takes in a list of float values y as input and adds noise to
    the data using a random number generator. The method returns a numpy array
    containing the noisy data.

    Args:
        self (analytical): analytical class object.
        y (List[float]): Input data.

    Returns:
        np.ndarray: Noisy data.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
            import numpy as np
            y = np.array([1, 2, 3, 4, 5])
            fun = analytical(sigma=1.0, seed=123)
            fun.add_noise(y)
        array([0.01087865, 1.63221335, 4.28792526, 4.19397442, 5.9202309 ])

    """
    # Use own rng:
    if self.fun_control["seed"] is not None:
        rng = default_rng(seed=self.fun_control["seed"])
    # Use class rng:
    else:
        rng = self.rng
    noise_y = np.array([], dtype=float)
    for y_i in y:
        noise_y = np.append(
            noise_y,
            y_i + rng.normal(loc=0, scale=self.fun_control["sigma"], size=1),
        )
    return noise_y

branin_noise(X, fun_control=None)

Branin function with noise.

Parameters:

Name Type Description Default
X array

input

required
fun_control dict

dict with entries sigma (noise level) and seed (random seed).

None

Returns:

Type Description
ndarray

A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
>>> import numpy as np
>>> X = np.array([[1, 2, 3], [4, 5, 6]])
>>> fun = analytical()
>>> fun.branin_noise(X)
array([  0.        ,  11.99999999])
Source code in spotpython/fun/objectivefunctions.py
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
def branin_noise(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    """Branin function with noise.

    Args:
        X (array):
            input
        fun_control (dict):
            dict with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        (np.ndarray): A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
        >>> import numpy as np
        >>> X = np.array([[1, 2, 3], [4, 5, 6]])
        >>> fun = analytical()
        >>> fun.branin_noise(X)
        array([  0.        ,  11.99999999])

    """
    if not isinstance(X, np.ndarray):
        X = np.array(X)

    if X.shape[1] != 2:
        raise Exception
    x = X[:, 0]
    y = X[:, 1]
    X1 = 15 * x - 5
    X2 = 15 * y
    a = 1
    b = 5.1 / (4 * np.pi**2)
    c = 5 / np.pi
    d = 6
    e = 10
    ff = 1 / (8 * np.pi)
    noiseFree = (a * (X2 - b * X1**2 + c * X1 - d) ** 2 + e * (1 - ff) * np.cos(X1) + e) + 5 * x
    noise_y = []
    for i in noiseFree:
        noise_y.append(i + np.random.standard_normal() * 15)
    return np.array(noise_y)

fun_branin(X, fun_control=None)

Branin function. The 2-dim Branin function is defined as $$ y = a (x_2 - b x_1^2 + c x_1 - r) ^2 + s (1 - t) \cos(x_1) + s, $$ where values of \(a, b, c, r, s\) and \(t\) are: \(a = 1\), \(b = 5.1 / (4\pi^2)\), \(c = 5 / \pi\), \(r = 6\), \(s = 10\) and \(t = 1 / (8\pi)\). It has three global minima with \(f(x) = 0.39788736\) at $$ (-\pi, 12.275), $$ $$ (\pi, 2.275), $$ and $$ (9.42478, 2.475). $$ Input domain: This function is usually evaluated on the square \(x_1 \in [-5, 10] \times x_2 \in [0, 15]\).

Parameters:

Name Type Description Default
X array

input

required
fun_control dict

dict with entries sigma (noise level) and seed (random seed).

None

Returns:

Type Description
ndarray

np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
    pi = np.pi
    X = np.array([[0,0],
        [-pi, 12.275],
        [pi, 2.275],
        [9.42478, 2.475]])
    fun = analytical()
    fun.fun_branin(X)
    array([55.60211264,  0.39788736,  0.39788736,  0.39788736])
Source code in spotpython/fun/objectivefunctions.py
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
def fun_branin(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    r"""Branin function. The 2-dim Branin function is defined as
        $$
        y = a (x_2 - b x_1^2 + c x_1 - r) ^2 + s (1 - t) \cos(x_1) + s,
        $$
        where values of $a, b, c, r, s$ and $t$ are:
        $a = 1$, $b = 5.1 / (4\pi^2)$, $c = 5 / \pi$, $r = 6$, $s = 10$ and $t = 1 / (8\pi)$.
        It has three global minima with $f(x) = 0.39788736$ at
        $$
        (-\pi, 12.275),
        $$
        $$
        (\pi, 2.275),
        $$
        and
        $$
        (9.42478, 2.475).
        $$
        Input domain: This function is usually evaluated on the square $x_1 \in [-5, 10] \times x_2 \in [0, 15]$.

    Args:
        X (array):
            input
        fun_control (dict):
            dict with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
            pi = np.pi
            X = np.array([[0,0],
                [-pi, 12.275],
                [pi, 2.275],
                [9.42478, 2.475]])
            fun = analytical()
            fun.fun_branin(X)
            array([55.60211264,  0.39788736,  0.39788736,  0.39788736])

    """
    if fun_control is None:
        fun_control = self.fun_control
    if not isinstance(X, np.ndarray):
        X = np.array(X)
    if X.shape[1] != 2:
        raise Exception
    x1 = X[:, 0]
    x2 = X[:, 1]
    a = 1
    b = 5.1 / (4 * np.pi**2)
    c = 5 / np.pi
    r = 6
    s = 10
    t = 1 / (8 * np.pi)
    y = a * (x2 - b * x1**2 + c * x1 - r) ** 2 + s * (1 - t) * np.cos(x1) + s
    if self.fun_control["sigma"] > 0:
        return self.add_noise(y)
    else:
        return y

fun_branin_factor(X, fun_control=None)

Calculates the Branin function of (x1, x2) with an additional factor based on the value of x3. If x3 = 1, the value of the Branin function is increased by 10. If x3 = 2, the value of the Branin function is decreased by 10. Otherwise, the value of the Branin function is not changed.

Parameters:

Name Type Description Default
X ndarray

A 2D numpy array with shape (n, 3) where n is the number of samples.

required
fun_control Optional[Dict]

A dictionary containing control parameters for the function. If None, self.fun_control is used. Defaults to None.

None

Returns:

Type Description
ndarray

np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
    import numpy as np
    X = np.array([[0, 0, 0], [0, 0, 1], [0, 0, 2]])
    fun = analytical()
    fun.fun_branin_factor(X)
    array([55.60211264, 65.60211264, 45.60211264])
Source code in spotpython/fun/objectivefunctions.py
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
def fun_branin_factor(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    """
    Calculates the Branin function of (x1, x2) with an additional factor based on the value of x3.
    If x3 = 1, the value of the Branin function is increased by 10.
    If x3 = 2, the value of the Branin function is decreased by 10.
    Otherwise, the value of the Branin function is not changed.

    Args:
        X (np.ndarray):
            A 2D numpy array with shape (n, 3) where n is the number of samples.
        fun_control (Optional[Dict]):
            A dictionary containing control parameters for the function.
            If None, self.fun_control is used. Defaults to None.

    Returns:
        np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
            import numpy as np
            X = np.array([[0, 0, 0], [0, 0, 1], [0, 0, 2]])
            fun = analytical()
            fun.fun_branin_factor(X)
            array([55.60211264, 65.60211264, 45.60211264])
    """
    if fun_control is None:
        fun_control = self.fun_control
    if len(X.shape) == 1:
        X = np.array([X])
    if X.shape[1] != 3:
        raise Exception("X must have shape (n, 3)")
    x1 = X[:, 0]
    x2 = X[:, 1]
    x3 = X[:, 2]
    a = 1
    b = 5.1 / (4 * np.pi**2)
    c = 5 / np.pi
    r = 6
    s = 10
    t = 1 / (8 * np.pi)
    y = a * (x2 - b * x1**2 + c * x1 - r) ** 2 + s * (1 - t) * np.cos(x1) + s
    for j in range(X.shape[0]):
        if x3[j] == 1:
            y[j] = y[j] + 10
        elif x3[j] == 2:
            y[j] = y[j] - 10
    if self.fun_control["sigma"] > 0:
        return self.add_noise(y)
    else:
        return y

fun_branin_modified(X, fun_control=None)

Modified Branin function.

Parameters:

Name Type Description Default
X array

input

required
fun_control dict

dict with entries sigma (noise level) and seed (random seed).

None

Returns:

Type Description
ndarray

np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
>>> import numpy as np
>>> X = np.array([[1, 2, 3], [4, 5, 6]])
>>> fun = analytical()
>>> fun.fun_branin_modified(X)
array([  0.        ,  11.99999999])
Source code in spotpython/fun/objectivefunctions.py
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
def fun_branin_modified(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    """Modified Branin function.

    Args:
        X (array):
            input
        fun_control (dict):
            dict with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
        >>> import numpy as np
        >>> X = np.array([[1, 2, 3], [4, 5, 6]])
        >>> fun = analytical()
        >>> fun.fun_branin_modified(X)
        array([  0.        ,  11.99999999])

    """
    if fun_control is None:
        fun_control = self.fun_control
    if not isinstance(X, np.ndarray):
        X = np.array(X)

    if X.shape[1] != 2:
        raise Exception
    x = X[:, 0]
    y = X[:, 1]
    X1 = 15 * x - 5
    X2 = 15 * y
    a = 1
    b = 5.1 / (4 * np.pi**2)
    c = 5 / np.pi
    d = 6
    e = 10
    ff = 1 / (8 * np.pi)
    y = (a * (X2 - b * X1**2 + c * X1 - d) ** 2 + e * (1 - ff) * np.cos(X1) + e) + 5 * x
    if self.fun_control["sigma"] > 0:
        return self.add_noise(y)
    else:
        return y

fun_cubed(X, fun_control=None)

Cubed function.

Parameters:

Name Type Description Default
X array

input

required
fun_control dict

dict with entries sigma (noise level) and seed (random seed).

None

Returns:

Type Description
ndarray

np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
>>> import numpy as np
>>> X = np.array([[1, 2, 3], [4, 5, 6]])
>>> fun = analytical()
>>> fun.fun_cubed(X)
array([ 0., 27.])
Source code in spotpython/fun/objectivefunctions.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def fun_cubed(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    """Cubed function.

    Args:
        X (array):
            input
        fun_control (dict):
            dict with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
        >>> import numpy as np
        >>> X = np.array([[1, 2, 3], [4, 5, 6]])
        >>> fun = analytical()
        >>> fun.fun_cubed(X)
        array([ 0., 27.])
    """

    if fun_control is None:
        fun_control = self.fun_control
    if not isinstance(X, np.ndarray):
        X = np.array(X)

    X = np.atleast_2d(X)
    offset = np.ones(X.shape[1]) * self.offset
    y = np.array([], dtype=float)
    for i in range(X.shape[0]):
        y = np.append(y, np.sum((X[i] - offset) ** 3))
    if self.fun_control["sigma"] > 0:
        return self.add_noise(y)
    else:
        return y

fun_forrester(X, fun_control=None)

Forrester function. Function used by [Forr08a, p.83]. f(x) = (6x- 2)^2 sin(12x-4) for x in [0,1]. Starts with three sample points at x=0, x=0.5, and x=1.

Parameters:

Name Type Description Default
X array

input

required
fun_control dict

dict with entries sigma (noise level) and seed (random seed).

None

Returns:

Type Description
ndarray

np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
>>> import numpy as np
>>> X = np.array([[1, 2, 3], [4, 5, 6]])
>>> fun = analytical()
>>> fun.fun_forrester(X)
array([  0.        ,  11.99999999])
Source code in spotpython/fun/objectivefunctions.py
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
def fun_forrester(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    """Forrester function. Function used by [Forr08a, p.83].
       f(x) = (6x- 2)^2 sin(12x-4) for x in [0,1].
       Starts with three sample points at x=0, x=0.5, and x=1.

    Args:
        X (array):
            input
        fun_control (dict):
            dict with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
        >>> import numpy as np
        >>> X = np.array([[1, 2, 3], [4, 5, 6]])
        >>> fun = analytical()
        >>> fun.fun_forrester(X)
        array([  0.        ,  11.99999999])
    """
    if fun_control is None:
        fun_control = self.fun_control
    if not isinstance(X, np.ndarray):
        X = np.array(X)

    X = np.atleast_2d(X)
    y = np.array([], dtype=float)
    for i in range(X.shape[0]):
        y = np.append(y, (6.0 * X[i] - 2) ** 2 * np.sin(12 * X[i] - 4))
    if self.fun_control["sigma"] > 0:
        return self.add_noise(y)
    else:
        return y

fun_linear(X, fun_control=None)

Linear function.

Parameters:

Name Type Description Default
X array

input

required
fun_control dict

dict with entries sigma (noise level) and seed (random seed).

None

Returns:

Type Description
ndarray

np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
>>> import numpy as np
>>> X = np.array([[1, 2, 3], [4, 5, 6]])
>>> fun = analytical()
>>> fun.fun_linear(X)
array([ 6., 15.])
Source code in spotpython/fun/objectivefunctions.py
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def fun_linear(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    """Linear function.

    Args:
        X (array):
            input
        fun_control (dict):
            dict with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
        >>> import numpy as np
        >>> X = np.array([[1, 2, 3], [4, 5, 6]])
        >>> fun = analytical()
        >>> fun.fun_linear(X)
        array([ 6., 15.])

    """
    if fun_control is not None:
        self.fun_control = fun_control
    if not isinstance(X, np.ndarray):
        X = np.array(X)
    X = np.atleast_2d(X)
    y = np.array([], dtype=float)
    for i in range(X.shape[0]):
        y = np.append(y, np.sum(X[i]))
    if self.fun_control["sigma"] > 0:
        return self.add_noise(y)
    else:
        return y

fun_random_error(X, fun_control=None)

Return errors for testing spot stability. Args: X (array): input fun_control (dict): dict with entries sigma (noise level) and seed (random seed).

Returns:

Type Description
ndarray

np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
>>> import numpy as np
>>> X = np.array([[1, 2,], [4, 5 ]])
>>> fun = analytical()
>>> fun.fun_random_error(X)
array([24,  0])
Source code in spotpython/fun/objectivefunctions.py
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
def fun_random_error(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    """Return errors for testing spot stability.
    Args:
        X (array): input
        fun_control (dict): dict with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
        >>> import numpy as np
        >>> X = np.array([[1, 2,], [4, 5 ]])
        >>> fun = analytical()
        >>> fun.fun_random_error(X)
        array([24,  0])

    """
    if fun_control is not None:
        self.fun_control = fun_control
    if not isinstance(X, np.ndarray):
        X = np.array(X)

    if X.ndim == 1:
        X = X.reshape(-1, 1)
    y = np.array([], dtype=float)
    for i in range(X.shape[0]):
        # provoke error:
        if random() < 0.1:
            y = np.append(y, np.nan)
        else:
            y = np.append(y, np.sum(X[i]))
    if self.fun_control["sigma"] > 0:
        return self.add_noise(y)
    else:
        print(y)
        return y

fun_rosen(X, fun_control=None)

Rosenbrock function. Args: X (array): input fun_control (dict): dict with entries sigma (noise level) and seed (random seed).

Returns:

Type Description
ndarray

np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
>>> import numpy as np
>>> X = np.array([[1, 2,], [4, 5 ]])
>>> fun = analytical()
>>> fun.fun_rosen(X)
array([24,  0])
Source code in spotpython/fun/objectivefunctions.py
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
def fun_rosen(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    """Rosenbrock function.
    Args:
        X (array): input
        fun_control (dict): dict with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
        >>> import numpy as np
        >>> X = np.array([[1, 2,], [4, 5 ]])
        >>> fun = analytical()
        >>> fun.fun_rosen(X)
        array([24,  0])
    """

    if fun_control is None:
        fun_control = self.fun_control
    if not isinstance(X, np.ndarray):
        X = np.array(X)
    if X.shape[1] != 2:
        raise Exception
    x0 = X[:, 0]
    x1 = X[:, 1]
    b = 10
    y = (x0 - 1) ** 2 + b * (x1 - x0**2) ** 2
    if self.fun_control["sigma"] > 0:
        return self.add_noise(y)
    else:
        return y

fun_runge(X, fun_control=None)

Runge function. Formula: f(x) = 1/ (1 + sum(x_i) - offset)^2. Dim: k >= 1. Interval: -5 <= x <= 5

Parameters:

Name Type Description Default
X array

input

required
fun_control dict

dict with entries sigma (noise level) and seed (random seed).

None

Returns:

Type Description
ndarray

np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
>>> import numpy as np
>>> X = np.array([[1, 2, 3], [4, 5, 6]])
>>> fun = analytical()
>>> fun.fun_runge(X)
array([0.0625    , 0.015625  , 0.00390625])
Source code in spotpython/fun/objectivefunctions.py
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
def fun_runge(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    """Runge function. Formula: f(x) = 1/ (1 + sum(x_i) - offset)^2. Dim: k >= 1.
       Interval: -5 <= x <= 5

    Args:
        X (array): input
        fun_control (dict): dict with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
        >>> import numpy as np
        >>> X = np.array([[1, 2, 3], [4, 5, 6]])
        >>> fun = analytical()
        >>> fun.fun_runge(X)
        array([0.0625    , 0.015625  , 0.00390625])

    """
    if fun_control is None:
        fun_control = self.fun_control
    if not isinstance(X, np.ndarray):
        X = np.array(X)

    if X.ndim == 1:
        X = X.reshape(-1, 1)
    offset = np.ones(X.shape[1]) * self.offset
    y = np.array([], dtype=float)
    for i in range(X.shape[0]):
        y = np.append(y, (1 / (1 + np.sum((X[i] - offset) ** 2))))
    if self.fun_control["sigma"] > 0:
        return self.add_noise(y)
    else:
        return y

fun_sin_cos(X, fun_control=None)

Sinusoidal function. Args: X (array): input fun_control (dict): dict with entries sigma (noise level) and seed (random seed).

Returns:

Type Description
ndarray

A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
>>> import numpy as np
>>> X = np.array([[1, 2, 3], [4, 5, 6]])
>>> fun = analytical()
>>> fun.fun_sin_cos(X)
array([-1.        , -0.41614684])
Source code in spotpython/fun/objectivefunctions.py
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
def fun_sin_cos(self, X, fun_control=None):
    """Sinusoidal function.
    Args:
        X (array):
            input
        fun_control (dict):
            dict with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        (np.ndarray): A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
        >>> import numpy as np
        >>> X = np.array([[1, 2, 3], [4, 5, 6]])
        >>> fun = analytical()
        >>> fun.fun_sin_cos(X)
        array([-1.        , -0.41614684])
    """

    if fun_control is None:
        fun_control = self.fun_control
    if not isinstance(X, np.ndarray):
        X = np.array(X)
    if X.shape[1] != 2:
        raise Exception
    x0 = X[:, 0]
    x1 = X[:, 1]
    y = 2.0 * np.sin(x0 + self.hz) + 0.5 * np.cos(x1 + self.hz)
    if self.fun_control["sigma"] > 0:
        return self.add_noise(y)
    else:
        return y

fun_sphere(X, fun_control=None)

Sphere function.

Parameters:

Name Type Description Default
X array

input

required
fun_control dict

dict with entries sigma (noise level) and seed (random seed).

None

Returns:

Type Description
ndarray

np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
>>> import numpy as np
>>> X = np.array([[1, 2, 3], [4, 5, 6]])
>>> fun = analytical()
>>> fun.fun_sphere(X)
array([14., 77.])
Source code in spotpython/fun/objectivefunctions.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def fun_sphere(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    """Sphere function.

    Args:
        X (array):
            input
        fun_control (dict):
            dict with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
        >>> import numpy as np
        >>> X = np.array([[1, 2, 3], [4, 5, 6]])
        >>> fun = analytical()
        >>> fun.fun_sphere(X)
        array([14., 77.])

    """
    if fun_control is not None:
        self.fun_control = fun_control
    if not isinstance(X, np.ndarray):
        X = np.array(X)
    X = np.atleast_2d(X)
    offset = np.ones(X.shape[1]) * self.offset
    y = np.array([], dtype=float)
    for i in range(X.shape[0]):
        y = np.append(y, np.sum((X[i] - offset) ** 2))
    if self.fun_control["sigma"] > 0:
        return self.add_noise(y)
    else:
        return y

fun_wingwt(X, fun_control=None)

Wing weight function. Example from Forrester et al. to understand the weight of an unpainted light aircraft wing as a function of nine design and operational parameters: \(W=0.036 S_W^{0.758} Wfw^{0.0035} ( A / (\cos^2 \Lambda))^{0.6} q^{0.006} \lambda^{0.04} ( (100 Rtc)/(\cos \Lambda) ))^{-0.3} (Nz Wdg)^{0.49}\)

Symbol Parameter Baseline Minimum Maximum
\(S_W\) Wing area (\(ft^2\)) 174 150 200
\(W_{fw}\) Weight of fuel in wing (lb) 252 220 300
\(A\) Aspect ratio 7.52 6 10
\(\Lambda\) Quarter-chord sweep (deg) 0 -10 10
\(q\) Dynamic pressure at cruise (\(lb/ft^2\)) 34 16 45
\(\lambda\) Taper ratio 0.672 0.5 1
\(R_{tc}\) Aerofoil thickness to chord ratio 0.12 0.08 0.18
\(N_z\) Ultimate load factor 3.8 2.5 6
\(W_{dg}\) Flight design gross weight (lb) 2000 1700 2500
\(W_p\) paint weight (lb/ft^2) 0.064 0.025 0.08

Parameters:

Name Type Description Default
X array

input

required
fun_control dict

dict with entries sigma (noise level) and seed (random seed).

None

Returns:

Type Description
ndarray

np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
>>> import numpy as np
>>> X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9], [4, 5, 6, 7, 8, 9, 10, 11, 12]])
>>> fun = analytical()
>>> fun.fun_wingwt(X)
array([0.0625    , 0.015625  , 0.00390625])
Source code in spotpython/fun/objectivefunctions.py
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
def fun_wingwt(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    r"""Wing weight function. Example from Forrester et al. to understand the weight
        of an unpainted light aircraft wing as a function of nine design and operational parameters:
        $W=0.036 S_W^{0.758}  Wfw^{0.0035} ( A / (\cos^2 \Lambda))^{0.6} q^{0.006}  \lambda^{0.04} ( (100 Rtc)/(\cos
          \Lambda) ))^{-0.3} (Nz Wdg)^{0.49}$

    | Symbol    | Parameter                              | Baseline | Minimum | Maximum |
    |-----------|----------------------------------------|----------|---------|---------|
    | $S_W$     | Wing area ($ft^2$)                     | 174      | 150     | 200     |
    | $W_{fw}$  | Weight of fuel in wing (lb)            | 252      | 220     | 300     |
    | $A$       | Aspect ratio                          | 7.52     | 6       | 10      |
    | $\Lambda$ | Quarter-chord sweep (deg)              | 0        | -10     | 10      |
    | $q$       | Dynamic pressure at cruise ($lb/ft^2$) | 34       | 16      | 45      |
    | $\lambda$ | Taper ratio                            | 0.672    | 0.5     | 1       |
    | $R_{tc}$  | Aerofoil thickness to chord ratio      | 0.12     | 0.08    | 0.18    |
    | $N_z$     | Ultimate load factor                   | 3.8      | 2.5     | 6       |
    | $W_{dg}$  | Flight design gross weight (lb)         | 2000     | 1700    | 2500    |
    | $W_p$     | paint weight (lb/ft^2)                   | 0.064 |   0.025  | 0.08    |

    Args:
        X (array): input
        fun_control (dict): dict with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
        >>> import numpy as np
        >>> X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9], [4, 5, 6, 7, 8, 9, 10, 11, 12]])
        >>> fun = analytical()
        >>> fun.fun_wingwt(X)
        array([0.0625    , 0.015625  , 0.00390625])

    """
    if fun_control is None:
        fun_control = self.fun_control
    if not isinstance(X, np.ndarray):
        X = np.array(X)
    #
    y = np.array([], dtype=float)
    for i in range(X.shape[0]):
        Sw = X[i, 0] * (200 - 150) + 150
        Wfw = X[i, 1] * (300 - 220) + 220
        A = X[i, 2] * (10 - 6) + 6
        L = (X[i, 3] * (10 - (-10)) - 10) * np.pi / 180
        q = X[i, 4] * (45 - 16) + 16
        la = X[i, 5] * (1 - 0.5) + 0.5
        Rtc = X[i, 6] * (0.18 - 0.08) + 0.08
        Nz = X[i, 7] * (6 - 2.5) + 2.5
        Wdg = X[i, 8] * (2500 - 1700) + 1700
        Wp = X[i, 9] * (0.08 - 0.025) + 0.025
        # calculation on natural scale
        W = 0.036 * Sw**0.758 * Wfw**0.0035 * (A / np.cos(L) ** 2) ** 0.6 * q**0.006
        W = W * la**0.04 * (100 * Rtc / np.cos(L)) ** (-0.3) * (Nz * Wdg) ** (0.49) + Sw * Wp
        y = np.append(y, W)
    if self.fun_control["sigma"] > 0:
        return self.add_noise(y)
    else:
        return y

fun_xsin(X, fun_control=None)

Example function. Args: X (array): input fun_control (dict): dict with entries sigma (noise level) and seed (random seed).

Returns:

Type Description
ndarray

np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

Examples:

>>> from spotpython.fun.objectivefunctions import analytical
>>> import numpy as np
>>> X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9], [4, 5, 6, 7, 8, 9, 10, 11, 12]])
>>> fun = analytical()
>>> fun.fun_xsin(X)
array([0.84147098, 0.90929743, 0.14112001])
Source code in spotpython/fun/objectivefunctions.py
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
def fun_xsin(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    """Example function.
    Args:
        X (array): input
        fun_control (dict): dict with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        np.ndarray: A 1D numpy array with shape (n,) containing the calculated values.

    Examples:
        >>> from spotpython.fun.objectivefunctions import analytical
        >>> import numpy as np
        >>> X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9], [4, 5, 6, 7, 8, 9, 10, 11, 12]])
        >>> fun = analytical()
        >>> fun.fun_xsin(X)
        array([0.84147098, 0.90929743, 0.14112001])

    """
    if fun_control is None:
        fun_control = self.fun_control
    if not isinstance(X, np.ndarray):
        X = np.array(X)
    X = np.atleast_2d(X)
    y = np.array([], dtype=float)
    for i in range(X.shape[0]):
        y = np.append(y, X[i] * np.sin(1.0 / X[i]))
    if self.fun_control["sigma"] > 0:
        return self.add_noise(y)
    else:
        return y