Skip to content

multiobjectivefunctions

MultiAnalytical

Class for multiobjective analytical test functions.

Parameters:

Name Type Description Default
offset float

Offset value. Defaults to 0.0.

0.0
seed int

Seed value for random number generation. Defaults to 126.

126
fun_control dict

Dictionary containing control parameters for the function. Defaults to None.

None
Notes

See Numpy Random Sampling

Attributes:

Name Type Description
offset float

Offset value.

sigma float

Noise level.

seed int

Seed value for random number generation.

rng Generator

Numpy random number generator object.

fun_control dict

Dictionary containing control parameters for the function.

m int

Number of objectives.

Source code in spotpython/fun/multiobjectivefunctions.py
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
class MultiAnalytical:
    """
    Class for multiobjective analytical test functions.

    Args:
        offset (float):
            Offset value. Defaults to 0.0.
        seed (int):
            Seed value for random number generation. Defaults to 126.
        fun_control (dict):
            Dictionary containing control parameters for the function. Defaults to None.

    Notes:
        See [Numpy Random Sampling](https://numpy.org/doc/stable/reference/random/index.html#random-quick-start)

    Attributes:
        offset (float):
            Offset value.
        sigma (float):
            Noise level.
        seed (int):
            Seed value for random number generation.
        rng (Generator):
            Numpy random number generator object.
        fun_control (dict):
            Dictionary containing control parameters for the function.
        m (int):
            Number of objectives.
    """

    def __init__(self, offset: float = 0.0, sigma=0.0, seed: int = 126, fun_control=None, m=1) -> None:
        self.offset = offset
        self.sigma = sigma
        self.m = m
        self.seed = seed
        self.rng = default_rng(seed=self.seed)
        self.fun_control = {"offset": offset, "sigma": self.sigma, "seed": self.seed}
        # overwrite fun_control with user input if provided
        if fun_control is not None:
            self.fun_control = fun_control
        # check if fun_control contains offset, sigma and seed, if not, add them
        if "offset" not in self.fun_control:
            self.fun_control["offset"] = self.offset
        if "sigma" not in self.fun_control:
            self.fun_control["sigma"] = self.sigma
        if "seed" not in self.fun_control:
            self.fun_control["seed"] = self.seed

    def __repr__(self) -> str:
        return f"analytical(offset={self.offset}, sigma={self.sigma}, seed={self.seed})"

    def _prepare_input_data(self, X, fun_control):
        if fun_control is not None:
            self.fun_control = fun_control
        if not isinstance(X, np.ndarray):
            X = np.array(X)
        X = np.atleast_2d(X)
        return X

    def _add_noise(self, y: List[float]) -> np.ndarray:
        """
        Adds noise to the input data.
        This method takes in a list of float values y as input and adds noise to
        the data using a random number generator. The method returns a numpy array
        containing the noisy data.

        Args:
            self (analytical): analytical class object.
            y (List[float]): Input data.

        Returns:
            np.ndarray: Noisy data.

        """
        if self.fun_control["sigma"] > 0:
            # Use own rng:
            if self.fun_control["seed"] is not None:
                rng = default_rng(seed=self.fun_control["seed"])
            # Use class rng:
            else:
                rng = self.rng
            noise_y = np.array([], dtype=float)
            for y_i in y:
                noise_y = np.append(
                    noise_y,
                    y_i + rng.normal(loc=0, scale=self.fun_control["sigma"], size=1),
                )
            return noise_y
        else:
            return y

    def fun_mo_linear(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
        """Linear function with multi-objective support.

        Args:
            X (np.ndarray): Input array of shape (n, k), where n is the number of samples and k is the number of features.
            fun_control (dict): Dictionary with entries `sigma` (noise level) and `seed` (random seed).

        Returns:
            np.ndarray: A 2D numpy array with shape (n, m), where n is the number of samples and m is the number of objectives.

        Examples:
        >>> from spotpython.fun.multiobjectivefunctions import MultiAnalytical
            import numpy as np
            fun = MultiAnalytical(m=1)
            # Input data
            X = np.array([[0, 0, 0], [1, 1, 1]])
            # Single objective
            print(fun.fun_mo_linear(X))
            # Output: [[0.]
            #          [3.]]
            # Two objectives
            fun = MultiAnalytical(m=2)
            print(fun.fun_mo_linear(X))
            # Output: [[ 0. -0.]
            #          [ 3. -3.]]
            # Three objectives
            fun = MultiAnalytical(m=3)
            print(fun.fun_mo_linear(X))
            # Output: [[ 0. -0.  0.]
            #          [ 3. -3.  3.]]
            # Four objectives
            fun = MultiAnalytical(m=4)
            print(fun.fun_mo_linear(X))
            # Output: [[ 0. -0.  0. -0.]
            #          [ 3. -3.  3. -3.]]
        """
        X = self._prepare_input_data(X, fun_control)
        offset = np.ones(X.shape[1]) * self.offset

        alpha = self.fun_control.get("alpha", 0.0)
        beta = self.fun_control.get("beta", None)
        if beta is not None:
            # Check if beta is a numpy array
            if not isinstance(beta, np.ndarray):
                # Convert beta to numpy array of shape (n,), where n is the number of columns in X
                beta = np.array(beta)
            if beta.shape[0] != X.shape[1]:
                raise Exception("beta must have the same number of elements as the number of columns in X")

        # Compute the linear response
        if beta is not None:
            # Weighted sum with intercept
            y_0 = alpha + np.dot(X - offset, beta)
        else:
            # Original behavior: just sum the rows
            y_0 = alpha + np.sum(X - offset, axis=1)

        # Add noise to the primary objective
        y_0 = self._add_noise(y_0)

        # Generate multi-objective outputs
        objectives = [y_0 if i % 2 == 0 else -y_0 for i in range(self.m)]
        return np.column_stack(objectives)

fun_mo_linear(X, fun_control=None)

Linear function with multi-objective support.

Parameters:

Name Type Description Default
X ndarray

Input array of shape (n, k), where n is the number of samples and k is the number of features.

required
fun_control dict

Dictionary with entries sigma (noise level) and seed (random seed).

None

Returns:

Type Description
ndarray

np.ndarray: A 2D numpy array with shape (n, m), where n is the number of samples and m is the number of objectives.

Examples:

from spotpython.fun.multiobjectivefunctions import MultiAnalytical import numpy as np fun = MultiAnalytical(m=1) # Input data X = np.array([[0, 0, 0], [1, 1, 1]]) # Single objective print(fun.fun_mo_linear(X)) # Output: [[0.] # [3.]] # Two objectives fun = MultiAnalytical(m=2) print(fun.fun_mo_linear(X)) # Output: [[ 0. -0.] # [ 3. -3.]] # Three objectives fun = MultiAnalytical(m=3) print(fun.fun_mo_linear(X)) # Output: [[ 0. -0. 0.] # [ 3. -3. 3.]] # Four objectives fun = MultiAnalytical(m=4) print(fun.fun_mo_linear(X)) # Output: [[ 0. -0. 0. -0.] # [ 3. -3. 3. -3.]]

Source code in spotpython/fun/multiobjectivefunctions.py
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
def fun_mo_linear(self, X: np.ndarray, fun_control: Optional[Dict] = None) -> np.ndarray:
    """Linear function with multi-objective support.

    Args:
        X (np.ndarray): Input array of shape (n, k), where n is the number of samples and k is the number of features.
        fun_control (dict): Dictionary with entries `sigma` (noise level) and `seed` (random seed).

    Returns:
        np.ndarray: A 2D numpy array with shape (n, m), where n is the number of samples and m is the number of objectives.

    Examples:
    >>> from spotpython.fun.multiobjectivefunctions import MultiAnalytical
        import numpy as np
        fun = MultiAnalytical(m=1)
        # Input data
        X = np.array([[0, 0, 0], [1, 1, 1]])
        # Single objective
        print(fun.fun_mo_linear(X))
        # Output: [[0.]
        #          [3.]]
        # Two objectives
        fun = MultiAnalytical(m=2)
        print(fun.fun_mo_linear(X))
        # Output: [[ 0. -0.]
        #          [ 3. -3.]]
        # Three objectives
        fun = MultiAnalytical(m=3)
        print(fun.fun_mo_linear(X))
        # Output: [[ 0. -0.  0.]
        #          [ 3. -3.  3.]]
        # Four objectives
        fun = MultiAnalytical(m=4)
        print(fun.fun_mo_linear(X))
        # Output: [[ 0. -0.  0. -0.]
        #          [ 3. -3.  3. -3.]]
    """
    X = self._prepare_input_data(X, fun_control)
    offset = np.ones(X.shape[1]) * self.offset

    alpha = self.fun_control.get("alpha", 0.0)
    beta = self.fun_control.get("beta", None)
    if beta is not None:
        # Check if beta is a numpy array
        if not isinstance(beta, np.ndarray):
            # Convert beta to numpy array of shape (n,), where n is the number of columns in X
            beta = np.array(beta)
        if beta.shape[0] != X.shape[1]:
            raise Exception("beta must have the same number of elements as the number of columns in X")

    # Compute the linear response
    if beta is not None:
        # Weighted sum with intercept
        y_0 = alpha + np.dot(X - offset, beta)
    else:
        # Original behavior: just sum the rows
        y_0 = alpha + np.sum(X - offset, axis=1)

    # Add noise to the primary objective
    y_0 = self._add_noise(y_0)

    # Generate multi-objective outputs
    objectives = [y_0 if i % 2 == 0 else -y_0 for i in range(self.m)]
    return np.column_stack(objectives)