kriging
Kriging
¶
Bases: surrogates
Kriging surrogate.
Source code in spotpython/build/kriging.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 |
|
__init__(noise=False, var_type=['num'], name='kriging', seed=124, model_optimizer=None, model_fun_evals=None, min_theta=-3.0, max_theta=2.0, n_theta=1, theta_init_zero=True, p_val=2.0, n_p=1, optim_p=False, min_Lambda=1e-09, max_Lambda=1.0, log_level=50, spot_writer=None, counter=None, metric_factorial='canberra', **kwargs)
¶
Initialize the Kriging surrogate.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
noise |
bool
|
Use regression instead of interpolation kriging. Defaults to False. |
False
|
var_type |
List[str]
|
Variable type. Can be either “num” (numerical) or “factor” (factor). Defaults to [“num”]. |
['num']
|
name |
str
|
Surrogate name. Defaults to “kriging”. |
'kriging'
|
seed |
int
|
Random seed. Defaults to 124. |
124
|
model_optimizer |
Optional[object]
|
Optimizer on the surrogate. If None, differential_evolution is selected. |
None
|
model_fun_evals |
Optional[int]
|
Number of iterations used by the optimizer on the surrogate. |
None
|
min_theta |
float
|
Min log10 theta value. Defaults to -3. |
-3.0
|
max_theta |
float
|
Max log10 theta value. Defaults to 2. |
2.0
|
n_theta |
int
|
Number of theta values. Defaults to 1. |
1
|
theta_init_zero |
bool
|
Initialize theta with zero. Defaults to True. |
True
|
p_val |
float
|
p value. Used as an initial value if optim_p = True. Otherwise as a constant. Defaults to 2. |
2.0
|
n_p |
int
|
Number of p values. Defaults to 1. |
1
|
optim_p |
bool
|
Determines whether p should be optimized. Deafults to False. |
False
|
min_Lambda |
float
|
Min Lambda value. Defaults to 1e-9. |
1e-09
|
max_Lambda |
float
|
Max Lambda value. Defaults to 1. |
1.0
|
log_level |
int
|
Logging level, e.g., 20 is “INFO”. Defaults to 50 (“CRITICAL”). |
50
|
spot_writer |
Optional[object]
|
Spot writer. Defaults to None. |
None
|
counter |
Optional[int]
|
Counter. Defaults to None. |
None
|
metric_factorial |
str
|
Metric for factorial. Defaults to “canberra”. Can be “euclidean”, “cityblock”, seuclidean”, “sqeuclidean”, “cosine”, “correlation”, “hamming”, “jaccard”, “jensenshannon”, “chebyshev”, “canberra”, “braycurtis”, “mahalanobis”, “matching”. |
'canberra'
|
Examples:
>>> from spotpython.build.kriging import Kriging
import numpy as np
import matplotlib.pyplot as plt
from numpy import linspace, arange
rng = np.random.RandomState(1)
X = linspace(start=0, stop=10, num=1_000).reshape(-1, 1)
y = np.squeeze(X * np.sin(X))
training_indices = rng.choice(arange(y.size), size=6, replace=False)
X_train, y_train = X[training_indices], y[training_indices]
S = Kriging(name='kriging', seed=124)
S.fit(X_train, y_train)
mean_prediction, std_prediction, s_ei = S.predict(X, return_val="all")
plt.plot(X, y, label=r"$f(x)$", linestyle="dotted")
plt.scatter(X_train, y_train, label="Observations")
plt.plot(X, mean_prediction, label="Mean prediction")
plt.fill_between(
X.ravel(),
mean_prediction - 1.96 * std_prediction,
mean_prediction + 1.96 * std_prediction,
alpha=0.5,
label=r"95% confidence interval",
)
plt.legend()
plt.xlabel("$x$")
plt.ylabel("$f(x)$")
_ = plt.title("Gaussian process regression on noise-free dataset")
plt.show()
References
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html [1] scikit-learn: Gaussian Processes regression: basic introductory example
Source code in spotpython/build/kriging.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
__is_any__(x, v)
¶
Check if any element in x
is equal to v
.
This method checks if any element in the input array-like x
is equal to the given value v
. Converts inputs to numpy arrays as necessary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Union[ndarray, Any]
|
The input array-like object to check. |
required |
v |
Any
|
The value to check for in |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if any element in |
Examples:
>>> from spotpython.build.kriging import Kriging
from numpy import power
import numpy as np
nat_X = np.array([[0], [1]])
nat_y = np.array([0, 1])
n=1
p=1
S=Kriging(name='kriging', seed=124, n_theta=n, n_p=p, optim_p=True, noise=False)
S.initialize_variables(nat_X, nat_y)
S.set_variable_types()
S.set_theta_values()
print(f"S.theta: {S.theta}")
print(S.__is_any__(power(10.0, S.theta), 0))
print(S.__is_any__(S.theta, 0))
S.theta: [0.]
False
True
Source code in spotpython/build/kriging.py
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 |
|
build_Psi()
¶
Constructs a new (n x n) correlation matrix Psi to reflect new data
or a change in hyperparameters.
This method uses theta
, p
, and coded X
values to construct the
correlation matrix as described in [Forr08a, p.57].
Attributes:
Name | Type | Description |
---|---|---|
Psi |
matrix
|
Correlation matrix Psi. Shape (n,n). |
cnd_Psi |
float
|
Condition number of Psi. |
inf_Psi |
bool
|
True if Psi is infinite, False otherwise. |
Raises:
Type | Description |
---|---|
LinAlgError
|
If building Psi fails. |
Examples:
>>> from spotpython.build.kriging import Kriging
import numpy as np
nat_X = np.array([[0], [1]])
nat_y = np.array([0, 1])
n=1
p=1
S=Kriging(name='kriging', seed=124, n_theta=n, n_p=p, optim_p=True, noise=False)
S.initialize_variables(nat_X, nat_y)
S.set_variable_types()
print(S.nat_X)
print(S.nat_y)
S.set_theta_values()
print(f"S.theta: {S.theta}")
S.initialize_matrices()
S.set_de_bounds()
new_theta_p_Lambda = S.optimize_model()
S.extract_from_bounds(new_theta_p_Lambda)
print(f"S.theta: {S.theta}")
S.build_Psi()
print(f"S.Psi: {S.Psi}")
[[0]
[1]]
[0 1]
S.theta: [0.]
S.theta: [1.60036366]
S.Psi: [[1.00000001e+00 4.96525625e-18]
[4.96525625e-18 1.00000001e+00]]
Source code in spotpython/build/kriging.py
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 |
|
build_U(scipy=True)
¶
Performs Cholesky factorization of Psi as U as described in [Forr08a, p.57].
This method uses either scipy_cholesky
or numpy’s cholesky
to perform the Cholesky factorization of Psi.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
scipy |
bool
|
If True, use |
True
|
Returns:
Type | Description |
---|---|
None
|
None |
Raises:
Type | Description |
---|---|
LinAlgError
|
If Cholesky factorization fails for Psi. |
Attributes:
Name | Type | Description |
---|---|---|
U |
matrix
|
Kriging U matrix, Cholesky decomposition. Shape (n,n). |
Examples:
>>> from spotpython.build.kriging import Kriging
import numpy as np
nat_X = np.array([[0], [1]])
nat_y = np.array([0, 1])
n=1
p=1
S=Kriging(name='kriging', seed=124, n_theta=n, n_p=p, optim_p=True, noise=False)
S.initialize_variables(nat_X, nat_y)
S.set_variable_types()
print(S.nat_X)
print(S.nat_y)
S.set_theta_values()
print(f"S.theta: {S.theta}")
S.initialize_matrices()
S.set_de_bounds()
new_theta_p_Lambda = S.optimize_model()
S.extract_from_bounds(new_theta_p_Lambda)
print(f"S.theta: {S.theta}")
S.build_Psi()
print(f"S.Psi: {S.Psi}")
S.build_U()
print(f"S.U:{S.U}")
[[0]
[1]]
[0 1]
S.theta: [0.]
S.theta: [1.60036366]
S.Psi: [[1.00000001e+00 4.96525625e-18]
[4.96525625e-18 1.00000001e+00]]
S.U:[[1.00000001e+00 4.96525622e-18]
[0.00000000e+00 1.00000001e+00]]
Source code in spotpython/build/kriging.py
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 |
|
build_psi_vec(cod_x)
¶
Build the psi vector required for predictive methods.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cod_x |
ndarray
|
Point to calculate the psi vector for. |
required |
Returns:
Type | Description |
---|---|
None
|
None |
Modifies
self.psi (np.ndarray): Updates the psi vector.
Examples:
>>> import numpy as np
from spotpython.build.kriging import Kriging
X_train = np.array([[1., 2.],
[2., 4.],
[3., 6.]])
y_train = np.array([1., 2., 3.])
S = Kriging(name='kriging',
seed=123,
log_level=50,
n_theta=1,
noise=False,
cod_type="norm")
S.fit(X_train, y_train)
# force theta to simple values:
S.theta = np.array([0.0])
nat_X = np.array([1., 0.])
S.psi = np.zeros((S.n, 1))
S.build_psi_vec(nat_X)
res = np.array([[np.exp(-4)],
[np.exp(-17)],
[np.exp(-40)]])
assert np.array_equal(S.psi, res)
print(f"S.psi: {S.psi}")
print(f"Control value res: {res}")
Source code in spotpython/build/kriging.py
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 |
|
exp_imp(y0, s0)
¶
Calculates the expected improvement for a given function value and error in coded units.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
y0 |
float
|
The function value in coded units. |
required |
s0 |
float
|
The error value. |
required |
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
The expected improvement value. |
Examples:
>>> from spotpython.build.kriging import Kriging
S = Kriging(name='kriging', seed=124)
S.aggregated_mean_y = [0.0, 0.0, 0.0, 0.0, 0.0]
S.exp_imp(1.0, 0.0)
0.0
>>> from spotpython.build.kriging import Kriging
S = Kriging(name='kriging', seed=124)
S.aggregated_mean_y = [0.0, 0.0, 0.0, 0.0, 0.0]
# assert S.exp_imp(0.0, 1.0) == 1/np.sqrt(2*np.pi)
# which is approx. 0.3989422804014327
S.exp_imp(0.0, 1.0)
0.3989422804014327
Source code in spotpython/build/kriging.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
extract_from_bounds(new_theta_p_Lambda)
¶
Extract theta
, p
, and Lambda
from bounds. The kriging object stores
theta
as an array, p
as an array, and Lambda
as a float.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
new_theta_p_Lambda |
ndarray
|
1d-array with theta, p, and Lambda values. Order is important. |
required |
Returns: None
Examples:
>>> import numpy as np
from spotpython.build.kriging import Kriging
import logging
logging.basicConfig(level=logging.DEBUG)
# Define the number of theta and p parameters
num_theta = 2
num_p = 3
# Initialize the Kriging model
kriging_model = Kriging(
name='kriging',
seed=124,
n_theta=num_theta,
n_p=num_p,
optim_p=True,
noise=True
)
# Create bounds array
bounds_array = np.array([1, 2, 3, 4, 5, 6])
# Extract parameters from given bounds
kriging_model.extract_from_bounds(new_theta_p_Lambda=bounds_array)
# Assertions to check if parameters are correctly extracted
assert np.array_equal(kriging_model.theta,
[1, 2]), f"Expected theta to be [1, 2] but got {kriging_model.theta}"
assert np.array_equal(kriging_model.p,
[3, 4, 5]), f"Expected p to be [3, 4, 5] but got {kriging_model.p}"
assert kriging_model.Lambda == 6, f"Expected Lambda to be 6 but got {kriging_model.Lambda}"
print("All assertions passed!")
Source code in spotpython/build/kriging.py
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
|
fit(nat_X, nat_y)
¶
Fits the hyperparameters (theta
, p
, Lambda
) of the Kriging model.
The function computes the following internal values:
1. theta
, p
, and Lambda
values via optimization of the function fun_likelihood()
.
2. Correlation matrix Psi
via buildPsi()
.
3. U matrix via buildU()
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
nat_X |
ndarray
|
Sample points. |
required |
nat_y |
ndarray
|
Function values. |
required |
Returns:
Name | Type | Description |
---|---|---|
object |
object
|
Fitted estimator. |
Attributes:
Name | Type | Description |
---|---|---|
theta |
ndarray
|
Kriging theta values. Shape (k,). |
p |
ndarray
|
Kriging p values. Shape (k,). |
LnDetPsi |
float64
|
Determinant Psi matrix. |
Psi |
matrix
|
Correlation matrix Psi. Shape (n,n). |
psi |
ndarray
|
psi vector. Shape (n,). |
one |
ndarray
|
vector of ones. Shape (n,). |
mu |
float64
|
Kriging expected mean value mu. |
U |
matrix
|
Kriging U matrix, Cholesky decomposition. Shape (n,n). |
SigmaSqr |
float64
|
Sigma squared value. |
Lambda |
float
|
lambda noise value. |
Examples:
>>> from spotpython.build.kriging import Kriging
import numpy as np
nat_X = np.array([[1, 0], [1, 0]])
nat_y = np.array([1, 2])
S = Kriging()
S.fit(nat_X, nat_y)
print(S.Psi)
[[1.00000001 1. ]
[1. 1.00000001]]
Source code in spotpython/build/kriging.py
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
|
fun_likelihood(new_theta_p_Lambda)
¶
Compute log likelihood for a set of hyperparameters (theta, p, Lambda).
This method computes the log likelihood for a set of hyperparameters (theta, p, Lambda) using several internal methods for matrix construction and likelihood evaluation. It handles potential errors by returning a penalty value for non-computable states.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_theta_p_Lambda |
ndarray
|
An array containing |
required |
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
The negative log likelihood or the penalty value if computation fails. |
Attributes:
Name | Type | Description |
---|---|---|
theta |
ndarray
|
Kriging theta values. Shape (k,). |
p |
ndarray
|
Kriging p values. Shape (k,). |
Lambda |
float
|
lambda noise value. |
Psi |
matrix
|
Correlation matrix Psi. Shape (n,n). |
U |
matrix
|
Kriging U matrix, Cholesky decomposition. Shape (n,n). |
negLnLike |
float
|
Negative log likelihood of the surface at the specified hyperparameters. |
pen_val |
float
|
Penalty value. |
Examples:
>>> from spotpython.build.kriging import Kriging
import numpy as np
nat_X = np.array([[0], [1]])
nat_y = np.array([0, 1])
n=1
p=1
S=Kriging(name='kriging', seed=124, n_theta=n, n_p=p, optim_p=True, noise=False)
S.initialize_variables(nat_X, nat_y)
S.set_variable_types()
print(S.nat_X)
print(S.nat_y)
S.set_theta_values()
print(f"S.theta: {S.theta}")
S.initialize_matrices()
S.set_de_bounds()
new_theta_p_Lambda = S.optimize_model()
S.extract_from_bounds(new_theta_p_Lambda)
print(f"S.theta: {S.theta}")
S.build_Psi()
print(f"S.Psi: {S.Psi}")
S.build_U()
print(f"S.U:{S.U}")
S.likelihood()
S.negLnLike
[[0]
[1]]
[0 1]
S.theta: [0.]
S.theta: [1.60036366]
S.Psi: [[1.00000001e+00 4.96525625e-18]
[4.96525625e-18 1.00000001e+00]]
S.U:[[1.00000001e+00 4.96525622e-18]
[0.00000000e+00 1.00000001e+00]]
-1.3862943611198906
Source code in spotpython/build/kriging.py
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 |
|
initialize_matrices()
¶
Initialize the matrices for the class instance.
This method initializes several matrices and attributes for the class instance.
The p
attribute is initialized as a list of ones with length n_p
, multiplied by 2.0.
The pen_val
attribute is initialized as the natural logarithm of the
variance of nat_y
, multiplied by n
, plus 1e4.
The negLnLike
, LnDetPsi
, mu
, U
, SigmaSqr
, and Lambda
attributes are all set to None.
The gen
attribute is initialized using the SpaceFilling
function with arguments k
and seed
.
The Psi
attribute is initialized as a zero matrix with shape (n, n)
and dtype float64
.
The psi
attribute is initialized as a zero matrix with shape (n, 1)
.
The one
attribute is initialized as a list of ones with length n
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
Examples:
>>> from spotpython.build.kriging import Kriging
import numpy as np
from numpy import log, var
nat_X = np.array([[1, 2], [3, 4], [5, 6]])
nat_y = np.array([1, 2, 3])
n=3
p=1
S=Kriging(name='kriging', seed=124, n_theta=n, n_p=p, optim_p=True, noise=True)
S.initialize_variables(nat_X, nat_y)
S.set_variable_types()
S.set_theta_values()
S.initialize_matrices()
# if var(self.nat_y) is > 0, then self.pen_val = self.n * log(var(self.nat_y)) + 1e4
# else self.pen_val = self.n * var(self.nat_y) + 1e4
assert S.pen_val == nat_X.shape[0] * log(var(S.nat_y)) + 1e4
assert S.Psi.shape == (n, n)
Returns:
Type | Description |
---|---|
None
|
None |
Source code in spotpython/build/kriging.py
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
|
initialize_variables(nat_X, nat_y)
¶
Initialize variables for the class instance.
This method takes in the independent and dependent variable data as input
and initializes the class instance variables.
It creates deep copies of the input data and stores them in the
instance variables nat_X
and nat_y
.
It also calculates the number of observations n
and
the number of independent variables k
from the shape of nat_X
.
Finally, it creates empty arrays with the same shape as nat_X
and nat_y
and stores them in the instance variables cod_X
and cod_y
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
nat_X |
ndarray
|
The independent variable data. |
required |
nat_y |
ndarray
|
The dependent variable data. |
required |
Returns:
Type | Description |
---|---|
None
|
None |
Examples:
>>> from spotpython.build.kriging import Kriging
import numpy as np
nat_X = np.array([[1, 2], [3, 4]])
nat_y = np.array([1, 2])
S = Kriging()
S.initialize_variables(nat_X, nat_y)
print(f"S.nat_X: {S.nat_X}")
print(f"S.nat_y: {S.nat_y}")
S.nat_X: [[1 2]
[3 4]]
S.nat_y: [1 2]
Source code in spotpython/build/kriging.py
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
|
likelihood()
¶
Calculate the negative concentrated log-likelihood.
Implements equation (2.32) from [Forr08a] to compute the negative of the
concentrated log-likelihood. Updates mu
, SigmaSqr
, LnDetPsi
, and negLnLike
.
Note
Requires prior calls to build_Psi
and build_U
.
Attributes:
Name | Type | Description |
---|---|---|
mu |
float64
|
Kriging expected mean value mu. |
SigmaSqr |
float64
|
Sigma squared value. |
LnDetPsi |
float64
|
Logarithm of the determinant of Psi matrix. |
negLnLike |
float
|
Negative log likelihood of the surface at the specified hyperparameters. |
Raises:
Type | Description |
---|---|
LinAlgError
|
If matrix operations fail. |
Examples:
>>> from spotpython.build.kriging import Kriging
import numpy as np
nat_X = np.array([[1], [2]])
nat_y = np.array([5, 10])
n=2
p=1
S=Kriging(name='kriging', seed=124, n_theta=n, n_p=p, optim_p=True, noise=False, theta_init_zero=True)
S.initialize_variables(nat_X, nat_y)
S.set_variable_types()
S.set_theta_values()
S.initialize_matrices()
S.build_Psi()
S.build_U()
S.likelihood()
assert np.allclose(S.mu, 7.5, atol=1e-6)
E = np.exp(1)
sigma2 = E / (E**2 - 1) * (25/4 + 25/4*E)
assert np.allclose(S.SigmaSqr, sigma2, atol=1e-6)
print(f"S.LnDetPsi:{S.LnDetPsi}")
print(f"S.negLnLike:{S.negLnLike}")
S.LnDetPsi:-0.1454134234019476
S.negLnLike:2.2185498738611282
Source code in spotpython/build/kriging.py
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 |
|
optimize_model()
¶
Optimize the model using the specified model_optimizer.
This method uses the specified model_optimizer to optimize the
likelihood function (fun_likelihood
) with respect to the model parameters.
The optimization is performed within the bounds specified by the attribute
de_bounds
.
The result of the optimization is returned as a list or tuple of optimized parameter values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
Examples:
>>> from spotpython.build.kriging import Kriging
import numpy as np
nat_X = np.array([[1, 2], [3, 4]])
nat_y = np.array([1, 2])
n=2
p=2
S=Kriging(name='kriging', seed=124, n_theta=n, n_p=p, optim_p=True, noise=True)
S.initialize_variables(nat_X, nat_y)
S.set_variable_types()
S.set_theta_values()
S.initialize_matrices()
S.set_de_bounds()
new_theta_p_Lambda = S.optimize_model()
print(new_theta_p_Lambda)
[0.12167915 1.49467909 1.82808259 1.69648798 0.79564346]
Returns:
Type | Description |
---|---|
Union[List[float], Tuple[float]]
|
result[“x”] (Union[List[float], Tuple[float]]): A list or tuple of optimized parameter values. |
Source code in spotpython/build/kriging.py
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
plot(show=True)
¶
This function plots 1D and 2D surrogates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
show |
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
None
|
None |
Note
- This method provides only a basic plot. For more advanced plots,
use the
plot_contour()
method of theSpot
class.
Examples:
>>> import numpy as np
from spotpython.fun.objectivefunctions import analytical
from spotpython.spot import spot
from spotpython.utils.init import fun_control_init, design_control_init
# 1-dimensional example
fun = analytical().fun_sphere
fun_control=fun_control_init(lower = np.array([-1]),
upper = np.array([1]),
noise=False)
design_control=design_control_init(init_size=10)
S = spot.Spot(fun=fun,
fun_control=fun_control,
design_control=design_control)
S.initialize_design()
S.update_stats()
S.fit_surrogate()
S.surrogate.plot()
# 2-dimensional example
fun = analytical().fun_sphere
fun_control=fun_control_init(lower = np.array([-1, -1]),
upper = np.array([1, 1]),
noise=False)
design_control=design_control_init(init_size=10)
S = spot.Spot(fun=fun,
fun_control=fun_control,
design_control=design_control)
S.initialize_design()
S.update_stats()
S.fit_surrogate()
S.surrogate.plot()
Source code in spotpython/build/kriging.py
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 |
|
predict(nat_X, return_val='y')
¶
This function returns the prediction (in natural units) of the surrogate at the natural coordinates of X.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
nat_X |
ndarray
|
Design variable to evaluate in natural units. |
required |
return_val |
str
|
Specifies which prediction values to return. It can be “y”, “s”, “ei”, or “all”. |
'y'
|
Returns:
Type | Description |
---|---|
Union[float, Tuple[float, float]]
|
Union[float, Tuple[float, float, float]]: Depending on |
Union[float, Tuple[float, float]]
|
predicted error, expected improvement, or all. |
Raises:
Type | Description |
---|---|
TypeError
|
If |
Examples:
>>> from spotpython.build.kriging import Kriging
import numpy as np
from numpy import linspace, arange
rng = np.random.RandomState(1)
X = linspace(start=0, stop=10, num=1_0).reshape(-1, 1)
y = np.squeeze(X * np.sin(X))
training_indices = rng.choice(arange(y.size), size=6, replace=False)
X_train, y_train = X[training_indices], y[training_indices]
S = Kriging(name='kriging', seed=124)
S.fit(X_train, y_train)
mean_prediction, std_prediction, s_ei = S.predict(X, return_val="all")
print(f"mean_prediction: {mean_prediction}")
print(f"std_prediction: {std_prediction}")
print(f"s_ei: {s_ei}")
Source code in spotpython/build/kriging.py
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 |
|
predict_coded(cod_x)
¶
Kriging prediction of one point in coded units as described in (2.20) in [Forr08a].
The error is returned as well. The method is used in predict
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
cod_x |
ndarray
|
Point in coded units to make prediction at. |
required |
Returns:
Type | Description |
---|---|
Tuple[float, float, float]
|
Tuple[float, float, float]: Predicted value, predicted error, and expected improvement. |
Note
Uses attributes such as self.mu
and self.SigmaSqr
that are expected
to be calculated by likelihood
.
Examples:
>>> from spotpython.build.kriging import Kriging
import numpy as np
from numpy import linspace, arange, empty
rng = np.random.RandomState(1)
X = linspace(start=0, stop=10, num=10).reshape(-1, 1)
y = np.squeeze(X * np.sin(X))
training_indices = rng.choice(arange(y.size), size=6, replace=False)
X_train, y_train = X[training_indices], y[training_indices]
S = Kriging(name='kriging', seed=124)
S.fit(X_train, y_train)
n = X.shape[0]
y = empty(n, dtype=float)
s = empty(n, dtype=float)
ei = empty(n, dtype=float)
for i in range(n):
y_coded, s_coded, ei_coded = S.predict_coded(X[i, :])
y[i] = y_coded if np.isscalar(y_coded) else y_coded.item()
s[i] = s_coded if np.isscalar(s_coded) else s_coded.item()
ei[i] = ei_coded if np.isscalar(ei_coded) else ei_coded.item()
print(f"y: {y}")
print(f"s: {s}")
print(f"ei: {-1.0*ei}")
Source code in spotpython/build/kriging.py
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 |
|
predict_coded_batch(X)
¶
Vectorized prediction for batch input using coded units.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
Input array of coded points. |
required |
Returns:
Type | Description |
---|---|
Tuple[ndarray, ndarray, ndarray]
|
Tuple[np.ndarray, np.ndarray, np.ndarray]: Arrays of predicted values, predicted errors, and expected improvements. |
Source code in spotpython/build/kriging.py
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 |
|
set_de_bounds()
¶
Determine search bounds for model_optimizer, e.g., differential evolution.
This method sets the attribute de_bounds
of the object to a list of lists,
where each inner list represents the lower and upper bounds for a parameter
being optimized. The number of inner lists is determined by the number of
parameters being optimized (n_theta
and n_p
), as well as whether noise is
being considered (noise
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
Examples:
>>> from spotpython.build.kriging import Kriging
S = Kriging(name='kriging', seed=124)
S.set_de_bounds()
print(S.de_bounds)
[[-3.0, 2.0]]
Returns:
Type | Description |
---|---|
None
|
None |
Source code in spotpython/build/kriging.py
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
set_theta_values()
¶
Set the theta values for the class instance.
This method sets the theta values for the class instance based
on the n_theta
and k
attributes. If n_theta
is greater than
k
, n_theta
is set to k
and a warning is logged.
The method then initializes the theta
attribute as a list
of zeros with length n_theta
.
The x0_theta
attribute is also initialized as a list of ones
with length n_theta
, multiplied by n / (100 * k)
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
Returns: None
Examples:
>>> from spotpython.build.kriging import Kriging
import numpy as np
from numpy import array
nat_X = np.array([[1, 2], [3, 4]])
nat_y = np.array([1, 2])
n=2
p=2
S=Kriging(name='kriging', seed=124, n_theta=n, n_p=p, optim_p=True, noise=True)
S.initialize_variables(nat_X, nat_y)
S.set_variable_types()
S.set_theta_values()
assert S.theta.all() == array([0., 0.]).all()
Source code in spotpython/build/kriging.py
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
|
set_variable_types()
¶
Set the variable types for the class instance.
This method sets the variable types for the class instance based
on the var_type
attribute. If the length of var_type
is less
than k
, all variable types are forced to ‘num’ and a warning is logged.
The method then creates Boolean masks for each variable
type (‘num’, ‘factor’, ‘int’, ‘ordered’) using numpy arrays, e.g.,
num_mask = array([ True, True])
if two numerical variables are present.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
Examples:
>>> from spotpython.build.kriging import Kriging
nat_X = np.array([[1, 2], [3, 4]])
nat_y = np.array([1, 2])
n=2
p=2
S=Kriging(name='kriging', seed=124, n_theta=n, n_p=p, optim_p=True, noise=True)
S.initialize_variables(nat_X, nat_y)
S.set_variable_types()
assert S.var_type == ['num', 'num']
assert S.var_type == ['num', 'num']
assert S.num_mask.all() == True
assert S.factor_mask.all() == False
assert S.int_mask.all() == False
assert S.ordered_mask.all() == True
Returns:
Type | Description |
---|---|
None
|
None |
Source code in spotpython/build/kriging.py
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 |
|
update_log()
¶
Update the log with the current values of negLnLike, theta, p, and Lambda. This method appends the current values of negLnLike, theta, p (if optim_p is True), and Lambda (if noise is True) to their respective lists in the log dictionary. It also updates the log_length attribute with the current length of the negLnLike list in the log. If spot_writer is not None, this method also writes the current values of negLnLike, theta, p (if optim_p is True), and Lambda (if noise is True) to the spot_writer object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
Returns:
Type | Description |
---|---|
None
|
None |
Examples:
>>> from spotpython.build.kriging import Kriging
import numpy as np
nat_X = np.array([[1, 2], [3, 4]])
nat_y = np.array([1, 2])
n=2
p=2
S=Kriging(name='kriging', seed=124, n_theta=n, n_p=p, optim_p=True, noise=True)
S.initialize_variables(nat_X, nat_y)
S.set_variable_types()
S.set_theta_values()
S.initialize_matrices()
S.set_de_bounds()
new_theta_p_Lambda = S.optimize_model()
S.update_log()
print(S.log)
{'negLnLike': array([-1.38629436]),
'theta': array([-1.14525993, 1.6123372 ]),
'p': array([1.84444406, 1.74590865]),
'Lambda': array([0.44268472])}
Source code in spotpython/build/kriging.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
|
weighted_exp_imp(cod_x, w)
¶
Weighted expected improvement. Currently not used in spotpython
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
object
|
The Kriging object. |
required |
cod_x |
ndarray
|
A coded design vector. |
required |
w |
float
|
Weight. |
required |
Returns:
Name | Type | Description |
---|---|---|
EI |
float
|
Weighted expected improvement. |
References
[Sobester et al. 2005].
Source code in spotpython/build/kriging.py
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 |
|